摘要
集中式超大规模储能电站与其控制系统逐渐发展成为信息物理系统(cyber physical system,CPS),信息技术和监控系统能够使超大规模储能电站应对多样化场景和满足不同的需求,但也带来一定程度的安全运行风险,因此对其进行可靠性建模和分析具有非常重要的意义.首先,建立超大规模储能电站的CPS模型,并分析物理侧与信息侧的交互影响;其次,对信息系统中多种信息扰动的可靠性状态进行建模分析,并提出储能电站CPS可靠性评估指标;然后,分别采用非序贯和序贯蒙特卡洛方法对超大规模储能电站的信息层和物理层元件进行抽样,并量化分析多信息扰动因素对超大规模储能电站CPS可靠性的影响;最后,通过算例仿真结果验证所提模型和方法的有效性,结果表明所提模型可为超大规模储能电站规划和运行提供有效技术支撑.
The centralized ultra large scale energy storage power station(ULSESPS)and its control system have gradually developed into a cyber physical system(CPS).Information technologies and monitoring systems can not only enable the ULSESPS to cope with diversified scenes and meet different demands,but also bring a certain degree of safe operational risks.Therefore,reliability modeling and analysis of the ULSESPS are of great significance.Firstly,this paper proposes the cyber physical system model of the ULSEPS,and analyzes the interaction between physical side and information side.Then,the probabilistic mode of various information disturbances in the cyber system is modeled and analyzed,and the CPS reliability evaluation index of the ULSESPS is proposed.Finally,the non-sequential and sequential Monte Carlo method is used for cyber and physical layer components simulation respectively,and the influence of multi-information disturbance factors on CPS reliability of the ULSESPS is analyzed quantitatively.The effectiveness of the proposed model and method is verified by simulation examples,which can provide technology support on ultra large scale energy storage power station planning and operation.
作者
高夏翔
李相俊
杨锡运
GAO Xia-xiang;LI Xiang-jun;YANG Xi-yun(School of Control and Computer Engineering,North China Electric Power University,Beijing 102206,China;State Key Laboratory of Control and Operation of Renewable Energy and Storage Systems,China Electric Power Research Institute,Beijing 100192,China)
出处
《控制与决策》
EI
CSCD
北大核心
2022年第5期1309-1319,共11页
Control and Decision
基金
国家电网公司总部科技项目(DG71-18-009)。
关键词
超大规模储能电站
信息物理系统
蒙特卡洛方法
可靠性评估
ultra large-scale energy storage power station
cyber physical system
Monte Carlo method
reliability assessment