期刊文献+

某类特殊p群的共轭类探讨 被引量:1

On the Conjugate Class of a Special p-Group
下载PDF
导出
摘要 对内交换p群与p阶循环群的直积进行讨论,给出了非正规子群共轭类数的具体计算公式. Direct product of internal exchange p-groups and p-order cyclic groups is discussed,the specific calculation formula of the number of conjugate classes of non-normal subgroups is given.
作者 张慧玲 ZHANG Huiling(Department of Mathematics,Education Institute of Taiyuan University,Taiyuan 030001,China)
机构地区 太原学院数学系
出处 《太原师范学院学报(自然科学版)》 2022年第2期8-10,14,共4页 Journal of Taiyuan Normal University:Natural Science Edition
关键词 内交换p群 直积 非正规子群 共轭类数 internal exchange p-group direct product non-normal subgroups conjugacy class
  • 相关文献

参考文献3

二级参考文献20

  • 1徐明曜,黄建华,李慧陵.有限群导引[M].2版.北京:科学出版社,2001.
  • 2陈顺民.子群的几类性质对有限群结构的影响[D].陕西:陕西师范大学数学与信息科学学院,2009.
  • 3徐明耀,曲海鹏.有限P-群[M].北京:北京大学出版社,2010.
  • 4BRANDL R. Groups with Few Non Normal Subgroups [J]. Comm Algebra, 1995, 23(6). 2091--2098.
  • 5MOUSAVI H. On Finite Groups with Few Non-Normal Subgroups [J]. Comm Algebra, 1999, 27(7) : 3143--3151.
  • 6GONG Lv, CAO Hong-ping, CHEN Gui-yun. Finite Nilpotent Groups Having Exactly Four Conjugaey Classes of Non Normal Subgroups [J]. Algebra Colloq, 2013, 20(4). 579--592.
  • 7SHI Hua-guo, CHEN Gui-yun. A Theorem of Finite Groups Having Only Two Non Normal Subgroups [J] Appl Math, 2008, 23(1): 173--178.
  • 8BRANDL R. Groups with few non-normal subgroups[J]. Comm. Alg,1995, 23 (6):2091-2098.
  • 9SCHMIDIT O Y. Groups having only one class of non-normal subgroups(Russian) [J] . Mat Sb, 1926, 33 : 161-172.
  • 10SCHMIDIT O Y. Groups with two classes of non- normal subgroups(Russian) [J]. Proc Seminar on Group Theory, 1938, 33:7-26.

共引文献8

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部