期刊文献+

碳空位改性g-C_(3)N_(4)的制备及光催化性能

Preparation and photocatalytic performance of modified g-C_(3)N_(4) by carbon vacancy
下载PDF
导出
摘要 以三聚氰胺为原料,采用高温二次煅烧法合成了具有{100}和{002}晶面的碳空位g-C_(3)N_(4)材料(V_(C)-C_(3)N_(4)),通过XRD、SEM、EDS、EIS、DRS等对其形貌和晶型结构等特性进行表征。碳空位的引入提高了电子传递能力并缩小了禁带宽度,共同促进了光催化降解活性。以罗丹明B为目标污染物的光催化降解实验表明,V_(C)-C_(3)N_(4)比g-C_(3)N_(4)对罗丹明B的光催化降解能力更强,降解率由53.0%提高至89.2%。自由基捕获实验表明超氧自由基为主要的活性物种,羟基自由基是次要的活性物种。 The carbon vacancy modified g-C_(3)N_(4)(V_(C)-C_(3)N_(4))with{100}and{002}crystal planes was synthesized by the high-temperature calcination method using melamine as the raw material.The morphology and crystal structures of g-C_(3)N_(4) were characterized by XRD,SEM,EDS,EIS and DRS.The results showed that the introduction of carbon vacancies would increase the electron transfer capacity and reduce the bandgap,which simultaneously promoted the photocatalytic degradation activity.Rhodamine B was used as the target pollutant to analysis the photocatalytic degradation performance of V_(C)-C_(3)N_(4).The results showed that V_(C)-C_(3)N_(4) had a stronger photocatalytic degradation ability to rhodamine B than g-C_(3)N_(4).The degradation rate of rhodamine B increased from 53.0%to 89.2%.The results of free radical capture experiments showed that superoxide radical was the main active species and hydroxyl radical was the secondary active species.
作者 李雪艳 蓝宸睿 王冠龙 张秀芳 LI Xueyan;LAN Chenrui;WANG Guanlong;ZHANG Xiufang(School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China)
出处 《大连工业大学学报》 CAS 北大核心 2022年第3期189-193,共5页 Journal of Dalian Polytechnic University
基金 国家自然科学基金项目(21906013).
关键词 石墨化氮化碳 碳空位 光催化 罗丹明B g-C3N4 carbon vacancy photocatalysis RhB
  • 相关文献

参考文献1

二级参考文献33

  • 1Yu J C, Ho W, Yu J, Yip H, Wong P K, Zhao J C, 2005. Efficient visible-light-induced photocatalytic disinfection on sulfur- doped nanocrystalline titania. Environmental Science and Technology, 39(4): 1175-1179.
  • 2Zhang Q Z, Qu'X H,Wang H, Xu F, Shi X Y, Wang W X, 2009. Mechanism and thermal rate constants for the complete series reactions of chlorophenols with H. Environmental Science and Technology, 43(11): 4105-4112.
  • 3Dutta P K, Pehkonen S O, Sharma V K, Ray A K, 2005. Pho- tocatalytic oxidation of arsenic(III): Evidence of hydroxyl radicals. Environmental Science and Technology, 39(6): 1827-1834.
  • 4Fukushima M, Tatsumi K, 2001. Degradation pathways of pen- tachlorophenol by photo-fenton systems in the presence of iron(III), humic acid, and hydrogen peroxide. Environmen- tal Science and Technology, 35(9): 1771-1778.
  • 5Gao F, Chen X Y, Yin K B, Dong S, Ren Z F, Yuan F et al., 2007. Visible-light photocatalytic properties of weak magnetic BiFeO3 nanoparticles. Advanced Materials, 19(19): 2889- 2892.
  • 6Gonzatlez L P, 5arna V, 5anchez tO P, 2010. Degractatlon ot chlorophenols by sequential biological-advanced oxidative process using Trametes pubescens and TiO2/UV. Biore- source Technology, 101(10): 3493-3499.
  • 7Gunlazuardi J, Lindu W A, 2005. Photocatalytic degradation of pentachlorophenol in aqueous solution employing im- mobilized TiO2 supported on titanium metal. Journal of Photochemistry and Photobiology A: Chemistry, 173(1): 51-55.
  • 8He C H, Gu M Y, 2006. Preparation, characterization and photocatalytic properties of Bil2SiO20 powders. Scripta Materialia, 55(5): 481--484.
  • 9Ho D R Senthilnanthan M, Mohammad J A, Vigneswaran S, Ngo H H, Mahinthakumar Get al., 2010. The application of photocatalytic oxidation in removing pentachlorophenol from contaminated Water. Journal of Advanced Oxidation Technologies, 13(1): 21-26.
  • 10Hu C, Hu X X, Guo J, Qu J H, 2006. Efficient destruction of pathogenic bacteria with NiO/SrBi204 under visible light irradiation. Environmental Science and Technology, 40(17): 5508-5513.

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部