期刊文献+

基于行人视野注意力场的人车微观交互模型 被引量:2

Pedestrian-Vehicle Micro-Interaction Model Based on Attention Field of Pedestrian Vision
下载PDF
导出
摘要 从行人视觉认知角度出发,提出一种基于行人视野注意力场的人车微观交互模型。构建视野注意力场驱动行人视野域,利用人工势场驱动行人运动,利用目标捕捉算法来控制行人视野域对目标的捕捉。为了验证模型的有效性,使用无人机采集鸟瞰视角下的人车交互数据并进行处理分析,将行人过街风格分为保守、谨慎和冒险3种类型,在Pygame平台下搭建仿真场景和交互模型,把不同行人过街风格的交互数据作为模型输入,以模型输出的行人时空轨迹与采集的真实时空轨迹之间的相似度进行实验对比。结果表明,建立的基于行人视野注意力场的人车微观交互模型比常规人工势场模型准确性提高了25.48%,能够有效地复现实际交通场景中的人车交互过程。 From the perspective of pedestrian visual cognition,a pedestrian-vehicle micro-interaction model based on the atten-tion field of pedestrian vision is proposed. The attention field of pedestrian vision is constructed to drive the pedes-trian field of vision,and the artificial potential field is used to drive the pedestrian movement,.The target capture algorithm is used to control the target capture in the pedestrian visual field. In order to verify the effectiveness of the model,drones are used to collect the pedestrian-vehicle interaction data from the bird’s-eye perspective and analyze them. Pedestrian crossing styles are divided into three types:conservative,cautious and adventurous. Simulation scenarios and interactive models are built on the Pygame platform,then,different types of interactive data are used as the model input,the similarity between the pedestrian spatiotemporal trajectory output by the model and the collected real spatiotemporal trajectory is experimentally compared. The results show that the pedestrian-vehicle mi-cro-interaction model based on pedestrian visual attention field is 25.48% more accurate than the conventional artifi-cial potential field model,and it can effectively reproduce the pedestrian-vehicle interaction process in the actual traf-fic scene.
作者 李文礼 肖凯文 石晓辉 梁锋华 黎平 Li Wenli;Xiao Kaiwen;Shi Xiaohui;Liang Fenghua;Li Ping(Chongqing University of Technology,Key Laboratory of Advanced Manufacturing Technology for Automobile Parts,Ministry of Education,Chongqing 400054;Chongqing Changan Automobile Co.,Ltd.,Chongqing 400020)
出处 《汽车工程》 EI CSCD 北大核心 2022年第6期808-820,共13页 Automotive Engineering
基金 重庆市自然科学基金面上项目(cstc2021jcyj-msxmX0183) 重庆市留学人员回国创业创新支持计划资助项目(cx2021070) 国家自然科学基金(51805061)资助。
关键词 人车交互 行人过街风格 行人视野注意力场 人工势场 pedestrian-vehicle interaction pedestrian crossing style pedestrian attention field of vision artificial potential field
  • 相关文献

参考文献9

二级参考文献58

  • 1李林恒,甘婧,曲栩,冒培培,冉斌.智能网联环境下基于安全势场理论的车辆跟驰模型[J].中国公路学报,2019,32(12):76-87. 被引量:33
  • 2张国强,王斯琨.行人过街交通心理与交通行为分析[J].东南大学学报(哲学社会科学版),2019(S02):142-144. 被引量:8
  • 3金立生,Bartvan Arem,杨双宾,Mascha van der Voort,Martijn Tideman.高速公路汽车辅助驾驶安全换道模型[J].吉林大学学报(工学版),2009,39(3):582-586. 被引量:28
  • 4何立萍,王子滨.美国发展军民两用技术实例(连载)[J].航天技术与民品,1997(3):32-34. 被引量:2
  • 5JIA Yu-han , WU Iian-ping, An Improved Car-follow?ing Model Considering Variable Safety Headway Dis?tance[J]. Physics Essays,2014,27(4) :616-619.
  • 6LEE K, PENG H. Evaluation of Automotive Forward Collision Warning and Collision Avoidance Algo?rithms[J]. Vehicle System Dynamics, 2005,43 (10) : 735-75l.
  • 7OLFA TI-SABER R. Flocking for Multi-agent Dynamic Systems:Algorithms and Theory[J]. IEEE Transactions on Automatic Control ,2006 ,51(3) :401-420.
  • 8BYME S,NAEEM W,FERGUSON S. Improved APF Strategies for Dual-arm Local Motion Planning [n. Transactions of the Institute of Measurement and Control, 2015,37 (1) : 73-90.
  • 9YANG Zhao-sheng , YU Yao, YU De-xin , et a1. APF?based Car Following Behavior Considering Lateral Distance [J]. Advances in Mechanical Engineering, 2013,5:207104-207112.
  • 10NI Dai-heng. A Unified Perspective on Traffic Flow Theory, Part I: The Field Theory[J]. Applied Mathe?matical Sciences, 2013,7 (39) : 1929-1946.

共引文献167

同被引文献9

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部