期刊文献+

时间尺度上具有次线性中立项的三阶Emden-Fowler时滞动力方程的振动性

Oscillation of Third-order Nonlinear Emden-Fowler Delay Dynamic Equation with a Sublinear Neutral Term on Time Scales
下载PDF
导出
摘要 判定时间尺度上时滞动力方程的振动性和渐近性在数学物理、自动控制理论及工程、传染病模型分析和桥梁设计等诸多领域具有重要作用。针对时间尺度上具有次线性中立项的三阶Emden-Fowler时滞动力方程的振动性和渐近性开展研究,利用时间尺度上的微积分理论,广义Riccati变换和不等式技巧,获得了该方程两个振动定理,改进和推广了已有文献的相应结果,并给出了两个实例验证了新定理的有效性。 Judging the oscillation and asymptotic behavior of delay dynamic equations on time scale plays an important role in mathematical physics,automatic control theory and engineering,infectious disease model analysis,bridge design and so on.Thus,the oscillation behavior of third-order nonlinear Emden-Fowler type delay dynamic equation with a sublinear neutral term on time scales are investigated.By using the dynamic calculus on time scales,generalized Riccati transformation and inequality technique,two oscillation theorems to ensure that every solution of the equation oscillates or converges to zero are obtained.These results extend and improve the results established in previous literatures.Finally,the effectiveness of the theoretical results obtained here are illustrated with two examples.
作者 仉志余 冯瑞华 ZHANG Zhiyu;FENG Ruihua(Department of Science,Taiyuan Institute of Technology,Taiyuan 030008;School of Science,North University of China,Taiyuan 030051)
出处 《工程数学学报》 CSCD 北大核心 2022年第2期292-308,共17页 Chinese Journal of Engineering Mathematics
基金 国家自然科学基金(11701528 11647034) 山西省自然科学基金(2011011002-3).
关键词 时间尺度 次线性中立项 时滞 动力方程 振动性 time scale sublinear neutral term time delay dynamic equation oscillation
  • 相关文献

参考文献2

二级参考文献15

  • 1韩振来,孙书荣,时宝.时间尺度上一类二阶时滞动力方程的振动定理[J].上海交通大学学报,2007,41(10):1718-1721. 被引量:8
  • 2Bohner M, Peterson A. Dynamic Equations on Time Scales, an Introduction with Applications[M]. Boston:Birkhauser, 2001.
  • 3Han Z L, Li T X, Sun S R, et al. Oscillation criteria for third order nonlinear delay dynamic equations ontime scales[J]. Annales Polonici Mathematici, 2010, 99(2): 143-156.
  • 4Erbe L H, Peterson A C, Saker S H. Asymptotic behavior of solutions of a third-order nonlinear dynamicequations on time scales[J]. Journal of Computational and Applied Mathematics, 2005, 181(1): 92-102.
  • 5Erbe L H, Peterson A C, Saker S H. Hille and Nehari type criteria for third order dynamic equations[J].Journal of Mathematical Analysis and Applications, 2007, 329(1): 112-131.
  • 6Erbe L H, Peterson A C, Saker S H. Oscillation and asymptotic behavior a third-order nonlinear dynamicequations[J]. The Canadian Applied Mathematics Quarterly, 2006, 14(2): 129-147.
  • 7Li T X, Han Z L, Sun Y B, et al. Asymptotic behavior of solutions for third-order half-linear delay dynamicequations on time scales[J]. Journal of Applied Mathematics and Computing, 2011, 36(1): 333-346.
  • 8Han Z L, Li T X, Sun S R, et al. Oscillation behavior of third-order neutral Emden-Fowler delay dynamicequations on time scales[J]. Advances in Difference Equations, 2010, 2010(1): 1-23.
  • 9Yu Z H, Wang Q R. Asymptotic behavior of solutions of third-order nonlinear dynamic equations on timescales[J]. Journal of Computational and Applied Mathematics, 2009, 225(2): 531-540.
  • 10Bohner M, Guseinov G S. Improper integrals on time scales[J]. Dynamic Systems and Applications, 2003,12(1-2): 45-65.

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部