期刊文献+

可积耦合AKNS方程的达布变换及其精确显式解

Darboux Transformation of the Integrable Coupling AKNS Equations and Its Exact Explicit Solutions
下载PDF
导出
摘要 由于许多物理现象需要建立有两个或多个分量的波动模型用以说明不同的模式、频率和极化现象。此外,只有多分量系统才能从理论和实践上解释一些多个物理场能量的交换。因此,给定一个可积系统,我们如何构造一个非平凡的微分方程系统,使它是可积的并且包含原系统为一个子系统,是可积耦合研究的重要问题之一。利用一个稳定方程推导可积耦合AKNS方程,然后给出一次达布变换,其中的元素可以用两个行列式的商来表示。通过比较一次达布变换的形式和特点,推导出用行列式表示的N次达布变换公式。进而利用种子解,通过N次达布变换进行迭代,可以得到任意阶孤子解。作为达布变换的应用,我们求出了精确显式单孤子解。 For many physical phenomena,it is necessary to establish wave models with two or more components to explain different patterns,frequencies and polarization phenomenna.In addition,only multi-component systems can explain the energy exchange of multiple physical fields theoretically and practically.Therefore,for a integrable system,how to construct a non-trivial differential equation system that is integrable and contains the original system as a subsystem is one of the important problems in the study of integrable coupling.In this work,the integrable couplings of the Ablowitz-Kaup-Newell-Segur equation are constructed based on a stationary equation.Then a Darboux transformation in which the elements can be expressed by the quotient of two determinants is obtained,and the production process is proved strictly.By comparing the forms and characteristics of the one-fold Darboux transformation,N-fold Darboux transformation formula which can be demonstrated as determinants is derived.Therefore,by means of seed solutions and N-fold Darboux transformation,any-order soliton solutions can be derived.As the application of Darboux tarnsformation,we solve the exact explicit one-soliton solutions.
作者 程建玲 冯依虎 CHENG Jianling;FENG Yihu(School of Education,Sias University,Xinzheng 451100;Department of Electronics and Information Engineering,Bozhou College,Bozhou 236800)
出处 《工程数学学报》 CSCD 北大核心 2022年第2期330-340,共11页 Chinese Journal of Engineering Mathematics
基金 国家自然科学基金(11975145) 安徽省自然科学重点研究项目(KJ2021A11500) 亳州学院校级优秀教学团队(2021XJXM006).
关键词 达布变换 可积耦合AKNS方程 精确显式解 Darboux transformation couplings of the AKNS equation exact explicit solutions
  • 相关文献

参考文献6

二级参考文献36

  • 1刘萍,张荣.广义偶合KdV孤子方程的达布变换及其精确解[J].洛阳师范学院学报,2005,24(5):1-5. 被引量:4
  • 2刘萍.Broer-Kaup系统的达布变换及其孤子解[J].数学物理学报(A辑),2006,26(B12):999-1007. 被引量:11
  • 3Wang Dengshan. Symmetries and prolongation structure theory of some nonlinear wave equation [ D ]. Beijiang:Chinese Academy of Sciences, 2008.
  • 4Wang Dengshan, Zhang Dajun, Yang Jianke. Integrable properties of the general coupled nonlinear Schrfidinger equations [ J ]. J Math Phys, 2010,51 (2) :023510.
  • 5Ohta Y, Wang Dengshan, Yang Jianke. General N-Dark-Dark solitons in the coupled nonlinear Schrtidinger equations [ J ]. Stud Appl Math, 2011,127(5 ) :345.
  • 6Matveev V B, Salle M A. Differential-difference evolution equation II: Darboux transformation for the Toda lattice [ J ]. Lett Math Phys, 1979,3 ( 3 ) :425-429.
  • 7Manakov S V. Nonlinear Fraunhofer diffraction[ J ]. Zh Eksp Teor Fiz Soy Phys JETP, 1974,38 (4) :693-696.
  • 8Park Q H, Shin H J. Systematic construction of vector solitons [ J ]. IEEE J SEL TOP QUANT,2002,8 (8) :432-439.
  • 9Radhakrishnan R,lakshmanan M,Hietarinta J. Inelastic collision and switching of coupled bright solitons in optical fibers[ J]. Phys Rev E, 1997,56(4) :2213.
  • 10Park Q P, Shin H J. Systematic construction of vector solitons [ J ]. IEEE J of Selected Topics in Quantun Electronics,2002,8 (3) :432.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部