期刊文献+

考虑距离因素与精英进化策略的平衡优化器 被引量:1

Equilibrium optimizer considering distance factor and elite evolutionary strategy
下载PDF
导出
摘要 针对平衡优化器(EO)存在寻优精度低、收敛速度慢、容易陷入局部最优的不足,提出一种考虑距离因素与精英进化策略的平衡优化器(E-SFDBEO)。该算法首先在平衡池候选解的选择中引入距离因素,通过自适应权重平衡适应度值和距离,调节算法在不同迭代时期的探索和开发能力;其次引入精英进化策略(EES),以精英自然进化和精英随机变异两种方式提升算法的收敛速度和精度;最后使用自适应t分布变异策略对部分个体施加扰动,并以贪心策略对个体进行保留,使算法能够有效跳出局部最优。在仿真实验中对所提算法与4种基本算法和2种改进算法在10个基准测试函数进行比较,并对算法进行Wilcoxon秩和检验,结果表明所提算法具有更好的收敛性和更高的求解精度。 Aiming at the shortcomings of Equilibrium Optimizer(EO)such as low optimization accuracy,slow convergence and being easy to fall into local optimum,a new EO in consideration with distance factor and Elite Evolutionary Strategy(EES)named E-SFDBEO was proposed.Firstly,the distance factor was introduced to select the candidate solutions of the equilibrium pool,and the adaptive weight was used to balance the fitness value and distance,thereby adjusting the exploration and development capabilities of the algorithm in different iterations.Secondly,the EES was introduced to improve the convergence speed and accuracy of the algorithm by both elite natural evolution and elite random mutation.Finally,the adaptive t-distribution mutation strategy was used to perturb some individuals,and the individuals were retained with greedy strategy,so that the algorithm was able to jump out of the local optimum effectively.In the simulation experiment,the proposed algorithm was compared with 4 basic algorithms and 2 improved algorithms based on 10 benchmark test functions and Wilcoxon rank sum test was performed to the algorithms.The results show that the proposed algorithm has better convergence and higher solution accuracy.
作者 张伟康 刘升 黄倩 郭雨鑫 ZHANG Weikang;LIU Sheng;HUANG Qian;GUO Yuxin(School of Management,Shanghai University of Engineering Science,Shanghai 201620,China)
出处 《计算机应用》 CSCD 北大核心 2022年第6期1844-1851,共8页 journal of Computer Applications
基金 国家自然科学基金资助项目(61075115,61673258) 上海市自然科学基金资助项目(19ZR1421600)。
关键词 平衡优化器 距离因素 精英进化策略 自适应权重 全局优化 Equilibrium Optimizer(EO) distance factor Elite Evolutionary Strategy(EES) adaptive weight global optimization
  • 相关文献

参考文献3

二级参考文献39

  • 1陈光宇,何健,施蔚锦,赵威.基于量子混合蛙跳算法的含分布式电源配电网无功优化[J].电网与清洁能源,2015,31(5):36-41. 被引量:16
  • 2王向军,嵇斗,张民.一种多群竞争进化规划算法[J].电子学报,2004,32(11):1824-1828. 被引量:13
  • 3崔智超,王青建.数理统计学源流及应用[J].大连教育学院学报,2005,21(2):53-55. 被引量:3
  • 4玄光男 程润伟.遗传算法与工程优化[M].北京:清华大学出版社,2003..
  • 5Yao X,Liu Y.A new evolutionary system for evolving artificial neural networks[J].IEEE Transactions on Neural Networks,1997,8(3):694-713.
  • 6Sebald A V,Schlenzig J.Minimax design of neural net controllers for highly uncertain plants[J].IEEE Transactions on Neural Networks,1994,5(1):73-82.
  • 7Borholdt S,Graundenz D.Generala symmetric neural networks and structure design by genetic algorithms[J].IEEE Transactions on Neural Networks,1992,5(5):327-334.
  • 8Fogel L J.Evolutionary programming in perspective:the top-down view[A].Zurada J M,Mark Ⅱ R J,Robinson C J eds.Computational Intelligence:Imitating Life[C].New York:Press,1994.135-141.
  • 9Fogel D B,Stayton L C.On the effectiveress of crossover in simulated evolutionary optimization[J].Biosystems,1994,32(2):171-182.
  • 10Angeline P J,Sauders G M,Pollack J B.An evolutionary algorithm that constructs recurrent neural networks[J].IEEE Transactions on Neural Networks,1994,5(1):54-65.

共引文献48

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部