期刊文献+

基于形状自适应非局部回归和非局部梯度正则的深度图像超分辨 被引量:1

Depth image super-resolution based on shape-adaptive non-local regression and non-local gradient regularization
下载PDF
导出
摘要 针对深度图像分辨率低、深度不连续性模糊问题,提出一种基于形状自适应非局部回归和非局部梯度正则的深度图像超分辨方法。为了探究深度图像非局部相似块之间的相关性,提出了形状自适应的非局部回归。该方法对每个像素点提取其形状自适应块,并根据形状自适应块构建目标像素的相似像素组;然后针对相似像素组中的每个像素,结合同场景的高分辨率彩色图像获得非局部权重,从而构建非局部回归先验。为了保持深度图像的边缘信息,对图像梯度的非局部性进行探究。不同于总变分(TV)正则化对所有像素点梯度的零均值拉普拉斯分布假设,该方法利用深度图像梯度的非局部相似性,用非局部块估计特定像素点的梯度均值,并用学习到的均值来拟合各像素点的梯度分布。实验结果表明,相较于基于边缘不一致性评价模型(EIEM),所提方法在Middlebury数据集上的2倍和4倍上采样率的平均绝对值差(MAD)分别下降了41.1%和40.8%。 To deal with the low resolution of depth images and blurring depth discontinuities,a depth image super-resolution method based on shape-adaptive non-local regression and non-local gradient regularization was proposed.To explore the correlation between non-local similar patches of depth image,a shape-adaptive non-local regression method was proposed.The shape-adaptive self-similarity patch was extracted for each pixel,and a similar pixel group for the target pixel was constructed according to its shape-adaptive patch.Then for each pixel in the similar pixel group,a non-local weight was obtained with the assistant of the high-resolution color image of the same scene,thereby constructing the non-local regression prior.To maintain the edge information of the depth image,the non-locality of the gradient of the depth image was explored.Different from the Total Variation(TV)regularization which assumed that all pixels obeyed Laplacian distribution with zero mean value,through non-local similarity of the depth image,the gradient mean value of specific pixel was estimated by non-local patches,and the gradient distribution of each pixel was fit by using the learned mean value.Experimental results show that compared with Edge Inconsistency Evaluation Model(EIEM)on Middlebury datasets,the proposed method decreases Mean Absolute Difference(MAD)of 41.1%and 40.8%respectively.
作者 张莹莹 任超 朱策 ZHANG Yingying;REN Chao;ZHU Ce(School of Information and Communication Engineering,University of Electronic Science and Technology of China,Chengdu Sichuan 611731,China;College of Electronics and Informatiom Engineering,Sichuan University,Chengdu Sichuan 610065,China)
出处 《计算机应用》 CSCD 北大核心 2022年第6期1941-1949,共9页 journal of Computer Applications
基金 国家自然科学基金资助项目(62020106011,U19A2052)。
关键词 深度图像 超分辨 形状自适应 非局部自相似 非局部梯度 depth image super-resolution shape-adaptive non-local self-similarity non-local gradient
  • 相关文献

参考文献1

二级参考文献14

  • 1郑立国,罗江林,许舸.基于Kinect的动作捕捉系统的实现[J].吉林大学学报(工学版),2013,43(S1):249-255. 被引量:22
  • 2DARIBO I,TILLIER C,PESQUET-POPESCU B.Distance dependent depth filtering in 3D warping for 3DTV [C]// MMSP 2007:Proceedings of IEEE 9th Workshop on Multimedia Signal Processing.Piscataway:IEEE Press,2007:312-315.
  • 3EDELER T,OHLIGER K,HUSSMANN S,et al.Time-of-flight depth image denoising using prior noise information [C]// ICSP2010:Proceedings of IEEE 10th International Conference on Signal Processing.Piscataway:IEEE Press,2010:119-122.
  • 4NEWCOMBE R,HILLIGES O,KIM D,et al.Kinect fusion:real-time dense surface mapping and tracking [C]// Proceedings of the 2011 10th IEEE International Symposium on Mixed and Augmented Reality.Piscataway:IEEE Press,2011:127-136.
  • 5IZADI S,KIM D,HILLIGES O,et al.Kinect fusion:real-time 3D reconstruction and interaction using a moving depth camera [C]// Proceedings of the 24th Annual ACM Symposium on User Interface Software and Technology.New York:ACM,2011:559-568.
  • 6TOMASI C,MANDUCHI R.Bilateral filtering for gray and color images [C]// Proceedings of the Sixth International Conference on Computer Vision.Washington,DC:IEEE Computer Society,1998:839-846.
  • 7PETSCHNINGG G,SZELISKI R,AGRAWALA A,et al.Digital photography with flash and no-flash image pairs [J].ACM Transactions on Graphics,2004,23(3):664-672.
  • 8YOSHIZAWA S,BELYAEV A,YOKOTA H.Fast Gauss bilateral filtering [J].Computer Graphics Forum,2010,29(1):60-74.
  • 9雷超阳,刘军华,张敏.一种基于自适应的新型中值滤波算法[J].计算机工程与应用,2008,44(12):60-62. 被引量:14
  • 10张志强,王万玉.一种改进的双边滤波算法[J].中国图象图形学报,2009,14(3):443-447. 被引量:75

共引文献24

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部