期刊文献+

基于脉冲神经网络光伏电站热斑故障预测 被引量:6

Hot spot fault prediction of photovoltaic power station based on pulse neural network
下载PDF
导出
摘要 针对光伏电池的热斑现象,利用红外热成像仪对光伏电池进行实时扫描得到红外热图,对红外热图进行图像增强等预处理。将图像分为四种状态,转换为信息量较强的状态矩阵。搭建基于脉冲时间依赖的突触可塑性(STDP)算法的带泄漏整合发放(LIF)模型脉冲神经网络,以发生典型热斑故障的电池片的状态变化作为时间序列训练脉冲神经网络,使模型习得热斑故障的状态时序,从而检测热斑故障,发出警报并实现定位的功能。脉冲神经网络的训练难度较大,因此,在Matlab上搭建了目前广泛使用的反向传播(BP)神经网络模型,通过对模型的改进,也能实现检测热斑故障的效果,继而证明了脉冲神经网络检测热斑故障的可行性。 Aiming at the hot spot phenomenon of photovoltaic cells,the infrared thermal imager was used to scan the photovoltaic cells in real time to get the infrared thermal image,and the infrared thermal image was preprocessed by image enhancement.The image was divided into four states and converted into a state matrix with strong information.The pulse neural network of LIF model based on STDP algorithm was built.The pulse neural network was trained by taking the state change of cells with typical hot spot fault as time series for making the model learn the state sequence of hot spot fault to detect hot spot fault,send out alarm and realize the positioning function.Because of the difficult training of pulse neural network,the widely used BP neural network model was built on Matlab.Through the improvement of the model,the effect of detecting hot spot fault can be achieved,proving the feasibility of detecting hot spot fault by pulse neural network.
作者 刘海波 吴亦凡 徐小奇 葛强 LIU Haibo;WU Yifan;XU Xiaoqi;GE Qiang(Department of Electrical and Energy Power Engineering,Yangzhou University,Yangzhou Jiangsu 225000,China)
出处 《电源技术》 CAS 北大核心 2022年第6期680-683,共4页 Chinese Journal of Power Sources
基金 国家自然科学基金青年科学基金(61903322) 2020年度江苏省高等学校大学生创新创业训练计划项目(202011117063Y)。
关键词 脉冲神经网络 BP神经网络 图像识别 预测 热斑故障 pulse neural network BP neural network image recognition forecast hot spot fault
  • 相关文献

参考文献4

二级参考文献16

  • 1王培珍,王群京,杨维翰.太阳能光伏阵列红外图像的特征提取[J].合肥工业大学学报(自然科学版),2004,27(10):1187-1190. 被引量:12
  • 2王培珍,沈玉樑,杨维翰.太阳光伏阵列的温度与红外特性分析[J].太阳能学报,2005,26(1):82-85. 被引量:16
  • 3王祥林,姜涛,牛伸克,谭玉山.非晶硅太阳能电池背电极断载热象无损检测[J].光子学报,1995,24(4):373-376. 被引量:1
  • 4李大勇,陈如亮,崔岩,石德全.基于Pspice的光伏组件热斑现象仿真[J].哈尔滨工业大学学报,2006,38(11):1888-1892. 被引量:20
  • 5Encinas-Sanz F,et al.Far infrared laser induced hot carrier impact ionization photovoltaic effect in silicon junctions Lattice temperature dependenee[J].Journal of Applied Physics,2002,92(1):1562-1568.
  • 6Mattei M,Notton G,Cristofari C,et al.Calculation of the polycrystalline PV module temperature using a simple method of energy balance[J].Renewable Energy,2006,31(4):553-567.
  • 7Luque A,Sala G,Arboiro J C.Electric and thermal model for non-uniformly illuminated concentration cells[J].Solar Energy Materials and solar Cells,1998,51(2):269-290.
  • 8King D L,Kratochvil J A,et al.Application for infrared image equipment in photovoltaic Cell[J].Module,and system Testing,IEEE,2000,1487-1489.
  • 9Brink A D.Thresholding digit images using two-dimensional entropics[J].Pattern Recognition,1992,25(8):803-808.
  • 10QUASCHNING V. Numerical simulation of current voltage charac- teristics of photovoltaie systems with shaded solar cells[J]. Solar En- ergy, 1996(4): 55-60.

共引文献137

同被引文献86

引证文献6

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部