摘要
在确定指数分布下定时截尾抽样检验方案时,为解决没有通用模型选择抽样检验方案的问题,建立以风险距离最小为目标的优化模型,给出目标函数和约束条件,在最优解难以通过解析法求出的情况下,采用粒子群优化算法求解来降低难度。介绍粒子群优化算法基本原理和求解流程,并结合具体案例给出了相对国家军用标准GJB 899A军用武器装备可靠性平均故障间隔时间试验更均衡的检验方案,验证了模型与算法的可行性和有效性。
In order to solve the problem that there is no universal model to choose a sampling inspection scheme when determining a sampling inspection scheme under the exponential distribution case,an optimization model with the minimum risk distance as the objective is established,and the objective function and constraint conditions are given.When the optimal solution is difficult to be solved by the analytic method,the particle swarm optimization algorithm is used to decrease the difficulty of the problem solving.The basic principle and solving process of the particle swarm optimization algorithm are introduced.Finally,the feasibility and effectiveness of the model and algorithm are verified by specific examples.
作者
郭志明
王迪
庞婷
李娟
赵丹
杨建新
GUO Zhiming;WANG Di;PANG Ting;LI Juan;ZHAO Dan;YANG Jianxin(Ordnance Science and Research Academy of China,Beijing 100089,China;Northern Science and Technology Information Institute,Beijing 100089,China;Information Center of China North Industries Group Corporation,Beijing 100089,China)
出处
《兵工学报》
EI
CAS
CSCD
北大核心
2022年第S01期203-207,共5页
Acta Armamentarii
基金
装备发展部预先研究项目(51319020201)。
关键词
抽样检验
指数分布
定时截尾
粒子群优化算法
sampling inspection sheme
exponential distribution
time truncated sampling
particle swarm optimization algorithm