期刊文献+

基于深度信念网络和迁移学习的隐匿FDI攻击入侵检测 被引量:6

Stealthy FDI attack detection based on deep belief network and transfer learning
原文传递
导出
摘要 成功地检测隐匿虚假数据入侵(false data injection,FDI)攻击是确保电力系统安全运行的关键.然而,大多数工作通过建立FDI攻击模型模拟真实的入侵行为,得到的模拟数据往往与真实数据存在一定的差异,导致基于机器学习的检测方法出现较差的学习效果.鉴于此,针对源域中模拟样本数据量大而目标域中真实样本标记少的特点,提出基于深度信念网络(DBN)和迁移学习的检测算法.DBN中的受限玻尔兹曼机(restrict boltzmann machine,RBM)能够对海量目标域无标签样本进行特征自学习,基于模型的迁移学习方法可以克服数据之间的差异性,同时解决有标签真实样本稀缺的问题.最后,在IEEE 14-bus电力系统模型上验证了所提出方法的优点和有效性. Successful detection of false data injection(FDI)attacks are essential for ensuring secure power grids operation.However,most work simulates real intrusion behaviors by establishing FDI attack models,and the simulated data obtained is often different from the real data,resulting in poor learning effects based on machine learning detection methods.Motivated by this fact,considering the large amount of simulated sample data in the source domain and a small number of labeled real samples in the target domain,a detection algorithm based on the deep belief network(DBN)and transfer learning is proposed.The restrict boltzmann machine(RBM)in the DBN can automatically extract features from a large number of unlabeled samples in the target domain,and the model-based transfer learning method overcomes the differences between data and solves the problem of the scarcity of labeled real samples.Finally,the IEEE 14-bus power system is employed to show the advantages and effectiveness of the proposed method.
作者 郭方洪 易新伟 徐博文 董辉 张文安 GUO Fang-hong;YI Xin-wei;XU Bo-wen;DONG Hui;ZHANG Wen-an(College of Information Engineering,Zhejiang University of Technology,Hangzhou 310014,China)
出处 《控制与决策》 EI CSCD 北大核心 2022年第4期913-921,共9页 Control and Decision
基金 国家自然科学基金青年基金项目(61903333) 浙江省“钱江人才”特殊急需类项目(QJD1902010)。
关键词 智能电网 隐匿虚假数据入侵攻击 深度信念网络 迁移学习 无监督学习 smart grid stealthy false data injection attack deep belief network transfer learning unsupervised learning
  • 相关文献

参考文献5

二级参考文献69

  • 1何大阔,王福利,毛志忠.离散非线性规划问题的改进遗传算法[J].控制与决策,2006,21(4):396-399. 被引量:7
  • 2蔡昌春,丁哓群,王斌.基于改进最小二乘法的电力系统状态估计[J].浙江电力,2006,25(4):6-9. 被引量:6
  • 3Liu Y, Ning P, Reiter M K. False data injection attacks against state estimation in electric power grids[J]. ACM Trans on Information and System Security, 2011, 14(1): 13.
  • 4Asada E N, Garcia A V, Romero R. Identifying multiple interacting bad data in power system state estimation[C]. Power Engineering Society General Meeting. San Francisco: IEEE, 2005: 571-577.
  • 5Pasqualetti F, Dorfler F, Bullo F. Cyber-physical attacks in power networks: Models, fundanmental limitations and monitor design[C]. Proc of IEEE Conf Decision Control and Eur. Orlando, 2011: 2195-2201.
  • 6Pasqualetti F, Dorfler F, Bullo F. Attack detection and identification in cyber-physical systems[J]. IEEE Trans on Automatic Control, 2013, 58(11): 2715-2729.
  • 7Skogestad S, Postlethwaite I. Multivariable feedback control analysis and design[C]. 2nd ed. New York: Wiley, 2005: 55-64.
  • 8Smith R S. A decoupled feedback structure for covertly appropriating networked control systems[J]. World Congress, 2011, 18(1): 90-95.
  • 9Scholtz E. Observer-based monitors and distributed wave controllers for electromechanical disturbances in power systems[D]. Boston: Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 2004.
  • 10HUANG A Q, CROW M L, HEYDT G T, et al. The future renewable electric energy delivery and management (FREEDM) system: the Energy Internet[J]. Proceedings of the IEEE, 2011, 99(1) : 133-148.

共引文献131

同被引文献87

引证文献6

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部