期刊文献+

大数据环境下道路场景高时空分辨率众包感知方法 被引量:6

Road crowd-sensing with high spatio-temporal resolution in big data era
下载PDF
导出
摘要 道路场景作为人类发展演变中最重要、最复杂、最典型的载体之一,是道路基础设施与活动行为共同构成的综合体,链接和构建“人地关系”。道路场景感知从二维抽象简略到三维精细丰富、从静态过去式向动态现在时发展,成为智慧城市、智能交通、无人驾驶的关键技术支撑,是我国新型城镇化战略、交通强国战略的核心技术保障。本文立足于时空交通大数据,提出基于道路场景静态基础设施“形”和动态活动行为“流”的高时空分辨率道路场景感知方法。该方法从静态路网“形”角度,以“点-线-面-体”等要素为研究脉络,构建高精度道路地图众包感知的理论体系;在活动行为“流”感知上,突破传统的点模式分析局限,发展了道路网络空间活动流的时空建模与多尺度分析方法。本文揭示了静态基础设施“形”结构与动态活动行为“流”模式交互作用下的道路场景演化规律,形成以“形”控“流”、借“流”定“形”、“形”“流”叠置的高时空精度道路场景众包感知理论体系,为智慧城市、智能交通的发展提供核心技术与数据支撑。 As one of the most important, complex, and typical carriers in the evolution of human development, the road scene is a complex of road infrastructure and activity behavior, linking and constructing the “man-land relationship”. Road scene perception has developed from two-dimensional abstraction to three-dimensional refinement, from static past tense to dynamic present tense. It has become the key technical support for smart cities, intelligent transportation, and autonomous driving, and is the core technical guarantee for China’s new urbanization strategy and strong transportation strategy. Based on spatio-temporal traffic data, this paper proposes a new method for road crowd-sensing with high spatio-temporal resolution based on static infrastructure “form” and dynamic activity behavior “flow”. From the perspective of static road network “form”, the method takes “point-line-surface-body” elements as the research context, and constructs a theoretical system of high-precision road map crowd-sensing. In terms of activity behavior “flow”, we break through the limitations of traditional point pattern analysis and develop a spatio-temporal modeling and multi-scale analysis method for spatial activity flow. In this paper, we reveal the evolution pattern of road scenes under the interaction of static infrastructure “form” structure and dynamic activity behavior “flow” pattern. Furthermore, we develop a road crowd-sensing theoretical system in which “form” controls “flow”, “flow” determines “form”, and “form” overlaps “flow”, to provide core technology and data support for the development of smart cities and intelligent transportation.
作者 唐炉亮 赵紫龙 杨雪 阚子涵 任畅 高婕 李朝奎 张霞 李清泉 TANG Luliang;ZHAO Zilong;YANG Xue;KAN Zihan;REN Chang;GAO Jie;LI Chaokui;ZHANG Xia;LI Qingquan(State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China;School of Geography and Information Engineering, China University of Geosciences, Wuhan 430074, China;Institute of Space and Earth Information Science, The Chinese University of Hong Kong, Shatin, Hong Kong, China;National-Local Joint Engineering Laboratory of Geo-Spatial Information Technology, Hunan University of Science and Technology, Xiangtan 411201, China;School of Urban Design, Wuhan University, Wuhan 430072, China;Shenzhen Key Laboratory of Spatial Smart Sensing and Services, College of Civil Engineering, Shenzhen University, Shenzhen 518060, China)
出处 《测绘学报》 EI CSCD 北大核心 2022年第6期1070-1090,共21页 Acta Geodaetica et Cartographica Sinica
基金 国家重点研发计划(2017YFB0503604,2016YFE0200400) 国家自然科学基金(41971405,41671442,41901394)。
关键词 道路场景 大数据 众包感知 静态基础设施“形” 动态活动行为“流” 时空建模 交互作用 road scene big data crowd-sensing static infrastructure“form” dynamic activity behavior“flow” spatio-temporal modeling interaction analysis
  • 相关文献

参考文献65

二级参考文献838

共引文献2479

同被引文献82

引证文献6

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部