摘要
Supervised image classification has been widely utilized in a variety of remote sensing applications.When large volume of satellite imagery data and aerial photos are increasingly available,high-performance image processing solutions are required to handle large scale of data.This paper introduces how maximum likelihood classification approach is parallelized for implementation on a computer cluster and a graphics processing unit to achieve high performance when processing big imagery data.The solution is scalable and satisfies the need of change detection,object identification,and exploratory analysis on large-scale high-resolution imagery data in remote sensing applications.