期刊文献+

基于BP神经网络预测红外-喷动干燥带壳鲜花生水分比 被引量:10

Backward Propagation(BP)Neural Network-Based Prediction of Moisture Ratio of Fresh In-shell Peanut during Infrared-Assisted Spouted Bed Drying
下载PDF
导出
摘要 为实现带壳鲜花生红外-喷动干燥过程中水分比的预测,本实验探究了不同干燥温度(55、60、65℃和70℃)、进口风速(16、17、18 m/s和19 m/s)和助流剂质量(1.0、1.5、2.0 kg和2.5 kg)对带壳鲜花生干燥时间和干燥速率的影响,建立了输入层为干燥温度、进口风速、助流剂质量和干燥时间,隐含层节点数为11,输出层为带壳鲜花生水分比,拓扑结构为“4-11-1”的BP神经网络模型。结果表明:干燥温度和进口风速是影响带壳鲜花生水分比的主要因素,增加进口风速和提高干燥温度能有效缩短带壳鲜花生的干燥时间,提高干燥效率。采用Levenberg-Marquardt(L-M)算法为训练函数,选择tansig-purelin为网络传递函数,经过有限次训练得到的BP神经网络模型,其水分比预测值与实验值之间的决定系数R^(2)为0.99,均方误差为0.02,水分比预测结果相较于传统经典数学模型准确且迅速。本研究建立的BP神经网络模型可为带壳鲜花生在红外-喷动干燥过程中的水分比在线预测提供理论依据和技术支持。 In order to predict the moisture ratio of in-shell peanut during infrared-assisted spouted bed drying,the effects of drying temperature(55,60,65 and 70℃),inlet airflow rate(16,17,18 and 19 m/s)and the amount of glidant(1.0,1.5,2.0 and 2.5 kg)on the drying time and drying rate were investigated.A BP neural network model whose topological structure was“4-11-1”was established using drying temperature,inlet airflow rate,the amount of glidant and drying time as the input layers,and the moisture ratio of peanut as the output layer.The number of nodes in the hidden layer of the established network was 11.The results showed that drying temperature and inlet airflow rate were the main factors affecting the moisture ratio of fresh in-shelled peanut.Increasing the inlet airflow rate or drying temperature could effectively shorten the drying time and improve drying efficiency.Using the Levenberg-Marquardt(LM)algorithm and tansig-purelin as the training function and the network transfer function,respectively,the BP neural network model was obtained after finite training.The determination coefficient(R^(2))between the predicted value and the experimental value was 0.99,and the mean square error was 0.02.Compared with the traditional classical model,the BP neural network model allowed rapid and accurate prediction of the moisture ratio.This model can provide a theoretical basis and technical support for on-line prediction of moisture ratio of fresh in-shell peanut during infrared-assisted spouted bed drying.
作者 朱凯阳 任广跃 段续 仇彩霞 李琳琳 楚倩倩 余祖艳 ZHU Kaiyang;REN Guangyue;DUAN Xu;QIU Caixia;LI Linlin;CHU Qianqian;YU Zuyan(College of Food and Bioengineering,Henan University of Science and Technology,Luoyang 471000,China;Henan Collaborative Innovation Center for Grain Storage Security,Zhengzhou 450001,China)
出处 《食品科学》 EI CAS CSCD 北大核心 2022年第11期9-18,共10页 Food Science
基金 国家自然科学基金面上项目(31671907) “十三五”国家重点研发计划重点专项(2017YFD0400901) “智汇郑州·1125聚才计划”项目(郑政[2017]40号) 河南省高校重点科研项目(20A550006)。
关键词 BP神经网络 带壳鲜花生 红外-喷动干燥 水分比 预测模型 backward propagation neural network fresh in-shell peanut infrared-assisted spouted bed drying moisture ratio prediction model
  • 相关文献

参考文献13

二级参考文献201

共引文献302

同被引文献141

引证文献10

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部