期刊文献+

Quantifying individual tree growth and tree competition using bi-temporal airborne laser scanning data:a case study in the Sierra Nevada Mountains,California 被引量:2

原文传递
导出
摘要 Improved monitoring and understanding of tree growth and its responses to controlling factors are important for tree growth modeling.Airborne Laser Scanning(ALS)can be used to enhance the efficiency and accuracy of large-scale forest surveys in delineating three-dimensional forest structures and under-canopy terrains.This study proposed an ALSbased framework to quantify tree growth and competition.Bi-temporal ALS data were used to quantify tree growth in height(ΔH),crown area(ΔA),crown volume(ΔV),and tree competition for 114,000 individual trees in two conifer-dominant Sierra Nevada forests.We analyzed the correlations between tree growth attributes and controlling factors(i.e.tree sizes,competition,forest structure,and topographic parameters)at multiple levels.At the individual tree level,ΔH had no consistent correlations with controlling factors,ΔA andΔV were positively related to original tree sizes(R>0.3)and negatively related to competition indices(R<−0.3).At the forest-stand level,ΔH andΔA were highly correlated to topographic wetness index(|R|>0.7),ΔV was positively related to original tree sizes(|R|>0.8).Multivariate regression models were simulated at individual tree level forΔH,ΔA,andΔV with the R2 ranged from 0.1 to 0.43.The ALS-based tree height estimation and growth analysis results were consistent with field measurements.
出处 《International Journal of Digital Earth》 SCIE EI 2018年第5期485-503,共19页 国际数字地球学报(英文)
基金 This study is supported by the National Natural Science Foundation of China[project numbers 41471363 and 31270563] National Science Foundation[DBI 1356077] the USDA Forest Service Pacific Southwest Research Station.
  • 相关文献

同被引文献61

引证文献2

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部