摘要
针对柴油机缸盖振动信号非平稳非线性的特点,提出一种基于散布熵改进的变分模态分解(DVMD)和堆叠稀疏自编码器(SSAE)相结合的柴油机混合故障诊断方法。利用散布熵确定变分模态分解的层数K,并根据散布熵转折点选取有效模态分量。分别对选取的各模态分量提取常用14个时域特征和小波包分解后的能量特征,构建混合多特征向量,输入基于堆叠稀疏自编码器和Softmax层构建的深度神经网络(DNN)中,实现了柴油机7种混合故障模式识别。与其他常见方法进行对比,结果表明该方法能够有效提取故障特征,具有较高的诊断准确率。
Here,aiming at non-stationary and nonlinear characteristics of Diesel engine cylinder head vibration signals,a hybrid fault diagnosis method of Diesel engine based on combination of the dispersion entropy-improved variational modal decomposition(DVMD)and the stacked sparse autoencoder(SSAE)was proposed.The number of VMD layers K was determined using dispersion entropy,and effective modal components were selected according to turning points of dispersion entropy.14 commonly used time-domain features and energy features after wavelet packet decomposition were extracted from the selected modal components,respectively to construct a hybrid multi-feature vector,input it into a deep neural network(DNN)built based on SSAE and Softmax layer,and realize recognition of 7 hybrid fault modes of Diesel engine.Compared with other common methods,the results showed that the proposed method can effectively extract fault features and have higher diagnosis accuracy.
作者
白雲杰
贾希胜
梁庆海
BAI Yunjie;JIA Xisheng;LIANG Qinghai(Army Engineering University,Shijiazhuang 050003,China;Hebei Provincial Key Lab of Condition Monitoring and Assessment of Mechanical Equipment,Shijiazhuang 050003,China)
出处
《振动与冲击》
EI
CSCD
北大核心
2022年第11期271-277,297,共8页
Journal of Vibration and Shock
关键词
变分模态分解
堆叠稀疏自编码器
柴油机
故障诊断
variational mode decomposition(VMD)
stacked sparse autoencoder(SSAE)
diesel engine
fault diagnosis