期刊文献+

纽结补中不可压缩且配对不可压缩曲面的性质

Properties of Incompressible and Pairwise Incompressible Surfaces in Knot Complements
原文传递
导出
摘要 本文主要利用链环补空间中曲面拓扑图的性质来研究一类链环L(n,3)(n∈Z^(+))补空间中处于标准位置的不可压缩且配对不可压缩曲面F的性质,进而得到曲面F的特征数.首先,根据纽结的性质,对一类链环L(n,3)进行研究,给出这类链环的分类,然后对于标准化后的链环L(n,3),如果F■S^(3)-L(n,3)为不可压缩且配对不可压缩曲面,则F为穿孔球面. In this paper,we mainly study a class of incompressible and pairwise incompressible surface F which in the complement of link L(n,3)(n∈Z^(+))by using the properties of topological graph of F.Furthermore,the properties of the surface characteristic number are obtained.We study properties of link L(n,3)by the properties of knots and give classifications for the links.Suppose that L(n,3)is a normalized link,and F■S^(3)-L is an incompressible and pairwise incompressible surface.We prove that F is a punctured sphere.
作者 韩友发 王树新 梁良 任冬华 HAN Youfa;WANG Shuxin;LIANG Liang;REN Donghua(School of Mathematics,Liaoning Normal University,Dalian,Liaoning,116029,P.R.China)
出处 《数学进展》 CSCD 北大核心 2022年第2期351-359,共9页 Advances in Mathematics(China)
基金 国家自然科学基金(Nos.11471151,11601209) 辽宁省教育厅青年项目(No.LQ2019018) 辽宁省教育厅面上项目(No.LJ2019004) 辽宁省科技厅面上项目(No.2020-MS-244)。
关键词 方块链环 拓扑图 纽结补 不可压缩曲面 配对不可压缩曲面 square link topological graph knot complement incompressible surface pairwise incompressible surface
  • 相关文献

参考文献2

二级参考文献8

  • 1Asaeda Marta M, et al. Kauffman-Harary conjecture holds for montesios knots. J Knot Theory Ramif, 2004, 4:467-477.
  • 2E1-Sayied H K. Incompressible surfaces and (1,1)-knots. J Knot Theory Ramif, 2006, 7:935-948.
  • 3Kang Ensil. Seifert surfaces in knot complements. J Knot Theory Ramif, 2007, 8:1053-1066.
  • 4Menasco W W, Thistlethwaite. Surfaces with boundary in alternating knot exteriors. J Reine Angew Math, 1992, 426:47 -65.
  • 5Menasco W W. Closed incompressible surfaces in alternating knot and link complements. Topology, 1984, 1:37-44.
  • 6Adams C C, etc. Almost alternating links. Topol Appl, 1992, 46:151- 165.
  • 7Han Youfa. Incompressible pairwise incompressible surfaces in almost alternating knot complements. Topol Appl, 1997, 80:239-249.
  • 8Han Youfa, Liu Haiyan, Liu Yu. Pairwise incompressibility of surfaces in knot complements. J Lioaning Normal University, 2004, 1:4-9.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部