期刊文献+

矩阵Hadamard积与Fan积的特征值新界 被引量:1

New Bounds for Eigenvalues of Hadamard Product and Fan Product of Matrices
下载PDF
导出
摘要 非负矩阵和M矩阵是矩阵论中两类重要的矩阵.矩阵特征值的研究是如今的重要问题.利用Brauer定理和Gerschgorin定理给出了非负矩阵Hadamard积和非奇异M矩阵Fan积的特征值新界.所有的新结果只依赖相关矩阵的元素,其计算简单容易.将所给定理的优越性进行了理论上的比较.通过数值例子验证所得结果改进了其他文献中的相关结果. Nonnegative matrix and M-matrix are two important matrices in matrix theory.It is important nowadays to study matrix eigenvalue.New bounds on eigenvalues for the Hadamard product of nonnegative matrices and the Fan product of nonsingular M-matrices are given by using Brauer theorem and Gerschgorin theorem.All new results depend only on the elements of the correlation matrices and are easy to calculate.The advantages of the given theorem are compared in theory.Numerical examples show that the results improve the result of the results in the other literatures.
作者 张晓凤 陈付彬 罗欢 ZHANG Xiaofeng;CHEN Fubin;LUO Huan(Department of Science and Technology, Kunming University of Science and Technology Oxbridge College, Kunming 650106, China)
出处 《西南师范大学学报(自然科学版)》 CAS 2022年第7期1-6,共6页 Journal of Southwest China Normal University(Natural Science Edition)
基金 国家自然科学基金项目(11501141) 云南省教育厅科学研究基金项目(2018JS747,2020J1233).
关键词 非负矩阵 HADAMARD积 谱半径 M矩阵 Fan积 最小特征值 nonnegative matrix Hadamard product spectral radius M-matrix Fan product minimum eigenvalue
  • 相关文献

参考文献9

二级参考文献45

  • 1王路群,刘绍武.交换环上矩阵代数的自同构群中心[J].黑龙江大学自然科学学报,1994,11(4):1-5. 被引量:1
  • 2谢乐平.形式三角矩阵环的反自同构[J].西南师范大学学报(自然科学版),2005,30(4):612-615. 被引量:4
  • 3谢乐平,曹佑安.形式三角矩阵环的导子和自同构[J].数学杂志,2006,26(2):165-170. 被引量:13
  • 4FANG M Z. Bounds on Eigenvalues for the Hadamard Product and the Fan Product of Matrices [J].Linear Algebra Ap- pl, 2007, 425(1): 7-15.
  • 5HUANG R. Some Inequalities for the Hadamard Product and the Fan Product of Matrices [J]. Linear Algebra Appl, 2008, 428(7): 1551-1559.
  • 6ZHOU D M, CHEN G L, WU G X, et al. On Some New Bounds for Eigenvalues of the Hadamard Product and the Fan Product of Matrices [J]. Linear Algebra Appl, 2013, 438(3): 1415-1426.
  • 7LI Y T, LI Y Y, WANG R W, et al. Some New Lower Bounds on Eigenvalues of the Hadamard Product and the Fan Product of Matrices[J]. Linear AlgebraAppl, 2010, 432(2/3): 536-545.
  • 8LIU Q B, CHEN G L, ZHAO L L. Some New Bounds on the Spectral Radius of Matrices[J]. Linear Algebra Appl, 2010, 432(4): 936-948.
  • 9ZHAO L L. Two Inequalities for the Hadamard Product of Matrices [J]. J Inequal Appl, 2012, 2012: 1-6.
  • 10LIU Q B, CHEN G L. On Two Inequalities for the Hadamard Product and the Fan Product of Matrices [J]. Linear AI- gebra Appl, 2009, 431(S5/7): 974-984.

共引文献29

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部