期刊文献+

基于深度学习的多模态情感识别综述 被引量:2

A survey of multimodal emotion recognition based on deep learning
下载PDF
导出
摘要 简要介绍了文本、语音和人脸等3种单模态情感识别方法,总结了常用的多模态情感数据集。通过分析基于深度学习的多模态情感识别的研究现状,按照融合方式将基于深度学习的多模态情感识别分为基于早期融合、晚期融合、混合融合以及多核融合等4种情感识别方法,并进行了对比分析。最后,指出了情感识别技术研究进展存在的问题及未来发展趋势。 Three unimodal emotion recognition methods,namely text,speech,and face,are briefly introduced,and common multimodal emotion datasets are summarized.By analyzing current research status,multimodal emotion recognition by deep learning is classified into four emotion recognition methods by early fusion,late fusion,hybrid fusion and multi-kernel fusion according to the fusion method,and a comparative analysis is made.Finally,the existing problems and future development trend of emotion recognition technology are pointed out.
作者 刘颖 艾豪 张伟东 LIU Ying;AI Hao;ZHANG Weidong(School of Communications and Information Engineering,Xi’an University of Posts and Telecommunications,Xi’an 710121,China)
出处 《西安邮电大学学报》 2022年第1期60-71,95,共13页 Journal of Xi’an University of Posts and Telecommunications
基金 西安市科技创新人才服务企业项目(2020KJRC0110)。
关键词 多模态 情感识别 深度学习 融合方式 multimodal emotion recognition deep learning fusion method
  • 相关文献

参考文献4

二级参考文献30

  • 1蒋丹宁,蔡莲红.基于语音声学特征的情感信息识别[J].清华大学学报(自然科学版),2006,46(1):86-89. 被引量:38
  • 2SCHULLER B, RIGOLL G, LANG M. Speech emotion recognition combining acoustic features and linguistic information in a hybrid support vector machine-belief network architecture [C] ∥IEEE International Conference on Acoustics, Speech, and Signal Processing, Proceedings (ICASSP 04). Montreal: IEEE, 2004: 1(1):577-580.
  • 3JONES C M, JONASSON M. Performance analysis of acoustic emotion recognition for in-car conversational interfaces [M]∥Universal Access in Human-Computer Interaction. Ambient Interaction. Berlin Heidelberg: Springer, 2007: 411-420.
  • 4GHARAVIAN D, SHEIKHAN M, NAZERIEH A, et al. Speech emotion recognition using FCBF feature selection method and GA-optimized fuzzy ARTMAP neural network [J]. Neural Computing and Applications, 2012, 21(8): 2115-2126.
  • 5LIN J C, WU C H, WEI W L. Error weighted semi-coupled hidden Markov model for audio-visual emotion recognition[J]. IEEE Transactions on Multimedia, 2012, 14(1): 142-156.
  • 6BHAYKAR M, YADAV J, RAO K S. Speaker dependent, speaker independent and cross language emotion recognition from speech using GMM and HMM [C]//IEEE National Conference on Communications (NCC 2013). New Delhi: IEEE, 2013: 15.
  • 7KHAN M, GOSKULA T, NASIRUDDIN M, et al. Comparison between k-NN and SVM method for speech emotion recognition [J]. International Journal on Computer Science and Engineering, 2011, 3(2): 607-611.
  • 8PAN S, TAO J, LI Y. The CASIA audio emotion recognition method for audio/visual emotion challenge 2011 [C]∥Affective Computing and Intelligent Interaction. Berlin Heidelberg: Springer, 2011: 388-395.
  • 9TANG Y, LAWRY J. Information cell mixture models: the cognitive representations of vague concepts[M]∥Integrated Uncertainty Management and Applications. Berlin Heidelberg: Springer, 2010: 371-382.
  • 10TANG Y, LAWRY J. Linguistic modelling and information coarsening based on prototype theory and label semantics [J]. International Journal of Approximate Reasoning, 2009, 50(8): 1177-1198.

共引文献41

同被引文献9

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部