期刊文献+

基于各向异性高斯滤波器的改进引导滤波算法 被引量:1

Improved guided filtering algorithm based on anisotropic Gaussian filter
下载PDF
导出
摘要 针对传统引导滤波中矩形均值加权窗口会引入过多干扰,导致图像边缘两侧模糊以及产生光晕伪影的不足,提出一种基于各向异性高斯滤波器的改进引导滤波算法。将各向异性高斯滤波器融入传统引导滤波算法,利用其较强的边缘分辨力更准确地识别图像的边缘结构。同时,对窗口内的像素信息进行各向异性加权,使其具有更强的边缘保持性。实验结果表明,改进算法比传统引导滤波算法精细边缘的保持性更好,并在图像平滑、图像增强和图像亮度调整等图像处理应用中的处理结果更优,在有效保留图像边缘结构的同时减少了边缘伪影和边缘模糊。 In view of the shortcomings in traditional guided filtering that the rectangular mean weighted window will introduce too much interference,resulting in halo artifacts and blur on both sides of the image edge,an improved guided filtering algorithm based on anisotropic Gaussian filter is proposed.The algorithm integrates the anisotropic Gaussian filter into the traditional guided filtering algorithm,which can more accurately identify the edge structure of the image with its edge resolution.The pixel information within the window is weighted and summed by anisotropy,so as to have stronger edge retention.The experimental results show that the improved algorithm has better retention of fine edges than the traditional guided filtering algorithm,and has better processing results in image processing applications such as image smoothing,image enhancement and image brightness adjustment.It can effectively preserve the image edge structure and reduce edge artifacts and edge blur.
作者 王富平 齐明辉 吉聪聪 岳兵 李藕 刘卫华 WANG Fuping;QI Minghui;JI Congcong;YUE Bing;LI Ou;LIU Weihua(School of Communications and Information Engineering,Xi'an University of Posts and Telecommunications,Xi'an 710121,China)
出处 《西安邮电大学学报》 2022年第1期89-95,共7页 Journal of Xi’an University of Posts and Telecommunications
基金 国家自然科学基金项目(61802305) 公安部科技强警基础工作专项项目(2020GABJC42)。
关键词 边缘信息 引导滤波 各向异性高斯滤波器 感知窗口 edge information guided filtering anisotropic Gaussian filter perception window
  • 相关文献

参考文献7

二级参考文献40

  • 1胡韦伟,汪荣贵,方帅,胡琼.基于双边滤波的Retinex图像增强算法[J].工程图学学报,2010,31(2):104-109. 被引量:55
  • 2[1]Zong X L, Laine A F, Geiser E A. Speckle reduction and contrast enhancement of echocardiograms via multiscale nonlinear processing, [J]. IEEE Trans. Med. Imag. 1998,17:532-540.
  • 3[2]Zong X, Geiser E A, Laine A F, et al. Homomorphic wavelet shrinkage and feature emphasis for speckle reduction and enhancement of echocardiographic images [J].SPIE, 1996, 2710:658-667.
  • 4[3]Xiang S H,Zhang Y T. Maximization of the signal-to-noise ratio for two dimensional medical ultrasound transducer sensitivity improvement by denoising wavelets[A].in Proc. Int. Conf. Biomedical Engineering[C] Hong Kong,1996.
  • 5[4]Zong X L, Laine A F,Geiser E A. Speckle reduction and contrast enhancement of echocardiograms via multiscale nonlinear processing[J]. IEEE Trans. Med. Imag. 1998, 17: 532-540.
  • 6[5]Asernaut H, April G. Properties of speckle integrated with a finite aperture and logarithmically transform[J]. J.Opt. Soc. Am,1976, 66:1160-1163.
  • 7[6]Coifman R R, Donoho D L. Translation-invariant de-noising[P]. In wavelests and statistics, Lecture Notes in Statistics 103, Eds. Berlin, Germany:Springer-verlag,1995.
  • 8[7]Donoho D L, Ohnstne I J. Adapting to unknown smoothness via wavelet shrinkage[J].Amer. Stat. Assoc. 1995.90:1200-1224.
  • 9[8]Jansen M, Malfait M,Bultheel A. Generalized cross validation forwavelet thresholding[J]. Signal Processing, January 1997,56(1):33-44.
  • 10何袱,达飞鹏.置信度传播和区域边缘构建的立体匹配算法[J].中国图象图形学报,2011,16(11):2060-2066. 被引量:6

共引文献58

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部