期刊文献+

激光干涉技术在水声测量中的应用与发展 被引量:2

Reviews of the Research Progresses in Underwater Acoustic Measurement Using Laser Interferometry Technique
原文传递
导出
摘要 激光干涉技术为水声测量提供了一种不同于传统水听器的新途径。对激光干涉技术在水声测量中的应用与发展进行了概述,从水听器灵敏度校准、声场分布测量、换能器表面振速测量三个方面,总结分析了国内外的研究进展及当前的技术水平。对上述三种技术的测量原理进行了介绍,并给出一些具有代表性的测量结果,分析了各技术的制约因素和有待解决的关键问题,对未来的研究发展方向进行了预测,虽然目前激光干涉测量还无法完全替代传统的水声测量方式,但经过持续研究与发展,有望更好地发挥激光干涉技术的优势,提高水声测量水平。 Laser interferometry technique provides an alternative way for measurement of underwater acoustic,which is different from the traditional way using a hydrophone.This paper presents a review of the applications in underwater acoustic measurement using laser interferometry,including hydrophone calibration,acoustic distribution measurement,and measurement of transducer surface velocity.The current research progress are summarized and analyzed.The measurement theories of the above three techniques are introduced and some representative results are given,the constraints of each technique and the key problems to be solved are analyzed,and the future research and development directions are predicted.Although laser interferometry is not yet a complete replacement for traditional underwater acoustic measurement,it is expected that the advantages of laser interferometry will be better utilized and the level of underwater acoustic measurements will be improved after continued research and development.
作者 王敏 杨平 何龙标 邢广振 冯秀娟 王珂 WANG Min;YANG Ping;HE Longbiao;XING Guangzhen;FENG Xiujuan;WANG Ke(National Institute of Metrology,Beijing 100029,China)
出处 《计量科学与技术》 2022年第4期2-12,共11页 Metrology Science and Technology
基金 国家自然科学基金项目(51805506、11904347)。
关键词 激光干涉技术 水声测量 水听器校准 声场分布测量 振速测量 laser interferometry technique underwater acoustic measurement hydrophone calibration acoustic distribution measurement transducer surface velocity measurement
  • 相关文献

参考文献6

二级参考文献21

  • 1鲍伯R.J 郑士杰译.水下电声测量[M].北京:国防工业出版社,1977.37-41.
  • 2Higgins F P, Norton S J, Linzer M. Optical interferometry visualization and computerized reconstruction of ultrasonic fields. J. Acoust. Soc. Am., 1980; 68(4): 1169-1176.
  • 3Monchalin J P. Optical detection of ultrasound. IEEE Transactions on ultrasonics, Ferroelectrics and Frequency control, 1986; 33(5): 485-499.
  • 4Carnell M T, Alock R D, Emmony D C. Optical imaging of shock waves produced by a high-energy electromagnetic transducer. Phys. Med. Biol., 1993; 38:1575-1588.
  • 5Reibold R, Molkenstruck W. Light diffraction tomography applied to the investigation of ultrasonic fields. Part 1: continuous waves. Acustica, 1984; 56:180-192.
  • 6Reibold R. Light diffraction tomography applied to the investigation of ultra.sonic fields. Part II: standing waves. Acustica, 1987; 63:283-289.
  • 7Pitts T A, Sagers A, Greenleaf J F. Optical phase contrast measurement of ultrasonic fields. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency control, 2001; 48(6): 1686-1694.
  • 8Pitts T A, Greenleaf J F. Three-dimensional optical measurement of instantaneous pressure. J. Acoust. Soc. Am., 2000; 108(6): 2873-2883.
  • 9Remenieras J P, Olivier Bou Matar et al. Acoustic pressure measurement by acousto-optic tomography. 2001 IEEE Ul- trasonics Symposium, 2001:505-508.
  • 10Bahr L, Lerch R. Beam profile measurements using light refractive tomography. IEEE Transactions on Ultrasonics, Ferroclectrics, and Frequency control, 2008; 55(2): 405- 413.

共引文献21

同被引文献50

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部