期刊文献+

氘钛等离子体高压查尔特鞘层特性理论研究

Theoretical study on characteristics of high voltage Child-sheath of mixed D^(+) and Ti^(2+) plasmas
下载PDF
导出
摘要 建立了混合多组分等离子体高压查尔特鞘层动力学模型,数值研究了氘钛等离子体高压查尔特鞘层特性。理论与数值研究结果表明,提升D^(+)离子比例、降低D^(+)离子及Ti^(2+)离子入鞘速度、降低等离子体密度等方式,均会有效增加鞘层厚度,并降低靶面场强幅值,这些方式有利于离子汇聚传输和降低靶面击穿风险。随加速电压的增加,离子引出稳定工作区域范围呈现先增加后减小的趋势。增加D^(+)离子比例、减小D^(+)离子及Ti^(2+)离子入鞘速度,均会显著增加离子引出稳定工作区域范围。 A dynamic model for high voltage Child-sheath of mixed multi-component plasmas is built up,and the characteristics of high voltage Child-sheath of mixed D^(+) and Ti^(2+) plasmas is numerically studied.The theoretical and numerical results demonstrate as follows.The depth of Child-sheath will increase and electric field intensity on target will decrease by increasing the ratio of D^(+) to Ti^(2+),decreasing the sheath-entering velocity of D^(+) or Ti^(2+),and decreasing the density of mixed plasmas.Through the above ways,ions could achieve convergent transportation and breakdown risk on target could also be reduced.As the increase of accelerating voltage,the range of stable ionextraction operating region will firstly increase and then decrease.By increasing the ratio of D^(+) to Ti^(2+) and decreasing the sheath-entering velocity of D^(+) or Ti^(2+),the range of stable ion-extraction operating region could be notably increased.
作者 沈伯昊 董烨 周前红 杨温渊 董志伟 Shen Bohao;Dong Ye;Zhou Qianhong;Yang Wenyuan;Dong Zhiwei(Institute of Applied Physics and Computational Mathematics,Beijing 100094,China;Graduate School of China Academy of Engineering Physics,Beijing 100088,China)
出处 《强激光与粒子束》 CAS CSCD 北大核心 2022年第7期90-98,共9页 High Power Laser and Particle Beams
基金 国家自然科学基金项目(11875094) 国家自然科学基金委员会与中国工程物理研究院联合基金项目(U1730247)。
关键词 混合多组分等离子体 高压查尔特鞘层 动力学模型 mixed multi-component plasmas high voltage Child-sheath dynamic model
  • 相关文献

参考文献3

二级参考文献20

  • 1迈克尔·A,力伯曼,阿伦·J.里登伯格.等离子体放电原理与材料处理[M].蒲以康等译.北京:科学出版社,2007.
  • 2Kovaleski S D. Calculation of the ion extraction boundary of a plasma ion source[J]. IEEE Trans on Plasma Science,2006,34(1) : 23-27.
  • 3Spence P J. The position of the free boundary formed between an expanding plasma and an electric field in differing geometries[D]. London: University of Reading, 2003.
  • 4Becker R, Herrmannsfeldt W B. IGUN-A program for the simulation of positive ion extraction including magnetic fields[J]. Rev Sci Instrum, 1992,63(4) : 2756-2758.
  • 5Boers J E. A digital computer program for the simulation of positive or negative particle beams on a PC[C]//Proc of Particle Accelerator Conference,IEEE. 1993:327-329.
  • 6Verboncoeur J P, Langdon A B, Gladd N T. An object-oriented electromagnetic PIC code[J]. Computer Physics Communications, 1995,87:199-211.
  • 7Petillo J J, Nelson E M, Deford J F, et al. Recent developments to the MICHELLE 2-D/3-D electron gun and collector modeling code[J]. IEEE Trans on Electron Devices ,2005 ,52(5) : 742-748.
  • 8Brown I G, Godechot X, Yu K M. Novel metal ion surface modification technique[J]. Appl Phys Lett, 1991,58(13) .. 1392-1394.
  • 9Anders A. Metal plasma immersion ion implantation and deposition: a review[J]. Surf Coat Technol, 1997,93(2-3) :158-167.
  • 10Mesyats G A, Proskurovsky D I. Pulsed electrical discharge in vacuum[M]. Berlin: Springer, 1989:10-25.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部