期刊文献+

基于AI技术的锂离子电池存储区火灾早期探测技术研究 被引量:5

Research on early fire detection technology of lithium-ion battery storage area based on AI technology
下载PDF
导出
摘要 为快速探测锂离子电池存储区域内失效的电池,分析存储区内锂离子电池的失效模式及火灾表征因子,利用基于图像识别和大数据Artificial Intelligence(AI)的技术,对锂钴电池、三元电池、三元电池组(PACK)的堆垛进行理论分析及模拟测试。结果表明:锂离子电池堆垛失效可分为6个阶段:锂离子电池失效外表面温度缓慢上升阶段、乳白色气体沿地平面飘浮阶段、黑色烟气上升阶段、箱体外温度达到探测阈值阶段、着火起始及传播阶段和燃尽阶段;提出了锂离子电池堆垛失效火灾表征因子出现的顺序为白雾、烟气、温度及火焰;同时,开发了一种适用于锂离子电池存储区白雾、烟气及火焰的基于图像识别与大数据分析的AI探测系统,且该系统可在冒白雾1 min内有效预警,较吸顶感烟火灾探测器响应时间快5~10 min。 In order to quickly detect the failed batteries in the storage area of lithium-ion batteries, the failure modes and fire characterization factors of lithium-ion batteries in the storage area are analyzed. Failure detection test of lithium cobalt batteries, ternary batteries and ternary battery packs were carried out by using the technology of artistic intelligence(AI) based on image recognition and big data. The results show that the stacking failure of lithium-ion batteries can be divided into six stages:the sharp rise of lithium-ion battery temperature, the ripple of milky white gas along the ground plane, the rise of black smoke, the initiation of ignition, flame expansion and burnout.The fire characterization factors of lithium-ion battery stacking failure are white fog, smoke, temperature and flame. At the same time, an AI detection system based on image recognition and big data analysis suitable for lithium-ion battery storage area fire is developed, and the system can realize early warning within 1 min of white fog, and the response speed is 5 ~ 10 min faster than that of ceiling smoke fire detector.
作者 林格 LIN Ge(Amperex Technology Limited,Fujian Ningde 352100,China)
出处 《消防科学与技术》 CAS 北大核心 2022年第5期686-689,693,共5页 Fire Science and Technology
关键词 锂离子电池 存储区 火灾 探测 图像识别 大数据 lithium-ion battery storage area fire detection image recognition big data
  • 相关文献

参考文献6

二级参考文献27

  • 1王冰,职秦川,张仲选,耿国华,周明全.灰度图像质心快速算法[J].计算机辅助设计与图形学学报,2004,16(10):1360-1365. 被引量:32
  • 2郭华军,李新海,张新明,王红强,王志兴,彭文杰.锂在人造石墨、中间相炭微球及无定形碳中的扩散系数(英文)[J].新型炭材料,2007,22(1):7-11. 被引量:12
  • 3Yuan Fei-niu.A fast accumulative motion orientation model based on integral image for video smoke detection[J].Pattern Recognition Letters,2008,29(7):925-932.
  • 4Ugur Toreyin,Yigithan Dedeoglu,and Ugur Gudukbay,et al..Computer vision based method for real-time fire and flame detection[J].Pattern Recognition Letters,2006,27(1):49-58.
  • 5Gonzalez R,Aquino A,and Romero R,et al..Wavelet-based smoke detection in outdoor video sequences[C].The 53rd IEEE International Midwest Symposium on Circuits and Systems,Seattle,USA,1-4 August,2010:383-387.
  • 6Kim Dong-keun and Wang Yuan-fang.Smoke detection in video[C].World Congress on Computer Science and Information Engineering,Los Angeles,USA,March 31-April 2,2009,5:759-763.
  • 7Chen Thou-ho (Chao-ho),Yin Yen-hui,and Huang Shi-feng,et al..The smoke detection for early fire-alarming system base on video processing[C].IEEE International Conference on Intelligent Information Hiding and Multimedia Signal Processing,Pasadena,California,USA,December 18-20,2006:427-430.
  • 8Yang Jing,Chen Feng,and Zhang Wei-dong.Visual-based smoke detection using support vector machine[C].Fourth International Conference on Natural Computation,Jinan,China,August 25-27,2008,4:301-305.
  • 9Wei Zheng,Wang Xin-gang,and An Wen-chuan.Targettracking based early fire smoke detection in video[C].International Conference on Image and Graphics,Xi'an,China,September 21-24,2009:172-176.
  • 10Takagi T and Sugeno M.Fuzzy identification of systems and its applications to modeling and control[J].IEEE Transactions on Systems,Man,Cysbernetics,1985,15(1):116-132.

共引文献104

同被引文献46

引证文献5

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部