摘要
近些年来,几何数值积分方法脱颖而出,并且已经在诸多的工程领域中得到了成功的应用。现将几何数值积分方法引入电力系统分析计算中,分别介绍了可分Hamilton系统的显式辛几何方法、无源动力系统的保积方法和保能量的平均向量场方法。以单机—无穷大系统作为算例,将上述所介绍的方法与电力系统暂态仿真中传统数值积分方法计算出的结果进行分析比较。在此基础上,采用暂态稳定性计算的经典模型,将显式保积数值方法应用于多机系统的暂态稳定性计算中。研究结果表明:几何数值积分方法相比于传统数值积分方法在分析电力系统暂态稳定性中可以获得更精确、更稳定的数值结果。
Recently,geometric numerical integration methods have come to the fore and have been successfully applied in many engineering fields.This paper introduces geometric numerical integration methods in the analysis and calculation of the power system,including the explicit symplectic geometric method of the separable Hamilton system,the integral method of the passive power system and the energy-preserving average vector field method.Taking the single-machine-infinite system as an example,this paper analyzes and compares the results calculated by the methods mentioned above with the ones by the traditional numerical integration method in power system transient simulation.On this basis,the volume-preserving schemes are applied to the transient stability simulation of multi-machine system,where the so-called classical model is used.The research results show that in the analysis of the transient stability of the power system,compared with the traditional numerical integration method,the geometric numerical integration method obtains more accurate and stable numerical results.
作者
汪芳宗
郭梦芳
宋墩文
杨学涛
张磊
WANG Fang-zong;GUO Meng-fang;SONG Dun-wen;YANG Xue-tao;ZHANG Lei(College of Electrical Engineering and New Energy,China Three Gorges University,Yichang 443002,China;China Electric Power Research Institute,Beijing 100040,China)
出处
《广西大学学报(自然科学版)》
CAS
北大核心
2022年第2期417-427,共11页
Journal of Guangxi University(Natural Science Edition)
基金
国家自然科学基金项目(52007103)
中国电力科学研究院创新基金项目(XT83-20-001)。
关键词
哈密尔顿系统
无源动力系统
几何数值积分
辛几何方法
保积方法
保能量方法
暂态稳定性
Hamilton system
source-free dynamical system
geometric numerical integration
symplectic geometry method
volume-preserving scheme
energy-preserving scheme
transient stability