期刊文献+

基于盲取证技术的图像真伪检测方法的研究 被引量:1

Research on image authenticity detection method based on bind forensics technology
下载PDF
导出
摘要 针对图片恶意篡改对社会舆论、科学研究、司法取证甚至国家安全产生重大威胁的问题,本文提出基于盲取证技术的图片真伪检测方法;通过提取清晰度残差,保留图片的非边缘区域,构造图像噪声特征向量;利用曝光等式计算参数向量,拼接成EXIF信息特征矩阵;通过对图像的EXIF信息和噪声特征进行训练并得出权重,并依据权重预测图像的EXIF信息,从而可判断图像的真伪性。实验证明:本文提出的方法能够实现对图像的真实性的判断,且实现简单,计算效率高. Maliciously tampered pictures pose a major threat to public opinion,scientific research,judicial forensics,and even national security.This paper proposes a method of image authenticity detection based on passive identification technology.In this method,the image noise feature vector is constructed by extracting the definition residual,preserving the non-edged region of the image.The exposure equation is used to calculate the parameter vector,and the EXIF information feature matrix is spliced.Through training the EXIF information and noise features of the image,the weight can be calculated and used to predict the EXIF information of the image,so as to judge the authenticity of the image.The experimental results show that the method proposed in this paper can realize the authenticity judgment of the whole image,which is simple and efficient.
作者 华蓓 陈前 黄汝维 苏志磊 HUA Bei;CHEN Qian;HUANG Ru-wei;SU Zhi-lei(School of Computer,Electronics and Information,Guangxi University,Nanning 530004,China)
出处 《广西大学学报(自然科学版)》 CAS 北大核心 2022年第2期506-515,共10页 Journal of Guangxi University(Natural Science Edition)
基金 国家自然科学基金项目(62062009) 广西科技重大专项资助项目(桂科AA17204058-17 桂科AA18118047-7)。
关键词 图像篡改 图像真伪检测技术 盲取证技术 EXIF信息 image tampering image authenticity detection technology blind forensics technology EXIF information
  • 相关文献

参考文献3

二级参考文献15

  • 1陈娟.虚假新闻图片的滥觞与规避——由《中国农村城市化改革第一爆》获奖引起的思考[J].新闻知识,2006(12):56-59. 被引量:5
  • 2Johnson M K,Farid H.Exposing digital forgeries by detecting inconsistencies in lighting[C]//Proceedings of the7th Workshop on Multimedia and Security,2005:1-10.
  • 3Ng T T,Chang S F,Sun Q.Blind detection of photomontage using higher order statistics[C]//Proceedings of the 2004 International Symposium on Circuits and Systems,2004,5:688-691.
  • 4Lin Z,Wang R,Tang X,et al.Detecting doctored images using camera response normality and consistency[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition,2005,1:1087-1092.
  • 5Lukás J,Fridrich J,Goljan M.Detecting digital image forgeries using sensor pattern noise[C]//SPIE,2006:362-372.
  • 6Lukas J,Fridrich J,Goljan M.Digital camera identification from sensor pattern noise[J].IEEE Transactions on Information Forensics and Security,2006,1(2):205-214.
  • 7Mihcak M K,Kozintsev I,Ramchandran K.Spatially adaptive statistical modeling of wavelet image coefficients and its application to denoising[C]//1999 IEEE International Conference on Acoustics,Speech,and Signal Processing,1999,6:3253-3256.
  • 8Wiener N.Extrapolation,interpolation,and smoothing of stationary time series:with engineering applications[M].[S.l.]:MIT Press,1964.
  • 9Rumelhart D E,Mc Clelland J L.Parallel distributed processing:explorations in the microstructure of cognition,volume 1:foundations[M].[S.l.]:MIT Press,1986.
  • 10Chang S G,Yu B,Vetterli M.Adaptive wavelet thresholding for image denoising and compression[J].IEEE Transactions on Image Processing,2000,9(9):1532-1546.

共引文献10

同被引文献15

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部