期刊文献+

基于Simulink的批次磨矿产物粒度组成预测研究

Study on prediction of particle size composition of batch grinding products based on Simulink
下载PDF
导出
摘要 以磁铁矿为研究对象,基于批次磨矿试验结果采用B_(II)法对构建模型中的破裂分布函数与选择函数进行求解计算,借助Simulink构建总体平衡仿真模型,进行磨矿产物粒度组成预测。结果表明:混合物料的磁铁矿批次磨矿过程符合一阶磨矿动力学模型,各粒级物料的磨矿速度与其粒度大小有关,物料的破碎速率随粒度的减小而减小。磨矿产物各粒级的预测值与试验值均相近,但在预测磨矿4 min的粒度组成时,在-0.075 mm和(-0.150+0.106)mm粒级预测的绝对误差较大,分别为3.21%和3%;在(-0.425+0.300)mm粒级预测的相对误差最大,为24.21%。预测磨矿8 min的粒度组成时,在(-0.212+0.150)mm粒级预测的绝对误差和相对误差最大,依次为0.65%和14.98%。与磨矿4 min相比,磨矿8 min的绝对误差之和与相对误差之和均较小,预测精度相对较高。 The research object of this paper is magnetite.The fracture distribution function and selection function in the model is calculated by B_(II) method based on the results of batch grinding test.The overall balance simulation model is constructed by Simulink to predict particle size composition of grinding products.The results show that magnetite batch grinding process of the mixed material conforms to the first-order grinding kinetics model.The grinding speed of each particle size material is related to its size,and the crushing rate of the material decreases with the decrease of the particle size.The predicted value of each particle size of the grinding product is close to the experimental value.When predicting the particle size composition at 4 min,the absolute error of prediction at-0.075 mm and-0.15+0.106 mm particle size is relatively large,which are 3.21%and 3%.The maximum relative error of prediction at-0.425+0.3 mm particle size is 24.21%.At 8 min,the absolute and relative errors of prediction at-0.212+0.15 mm particle size are the largest,which are 0.65%and 14.98%.Compared with 4 min,the sum of absolute errors and the sum of relative errors of 8 min are both smaller,and the prediction accuracy is relatively high.
作者 帅智超 许文哲 朱朋岩 杨金林 马少健 SHUAI Zhi-chao;XU Wen-zhe;ZHU Peng-yan;YANG Jin-lin;MA Shao-jian(School of Resources,Environment and Materials,Guangxi University,Nanning 530004,China)
出处 《广西大学学报(自然科学版)》 CAS 北大核心 2022年第2期538-544,共7页 Journal of Guangxi University(Natural Science Edition)
基金 国家自然科学基金项目(51874105) 广西自然科学基金项目(2018GXNSFAA281204)。
关键词 磨矿动力学 总体平衡模型 批次磨矿 SIMULINK 预测 grinding kinetics population balance model batch grinding Simulink prediction
  • 相关文献

参考文献3

二级参考文献47

  • 1赵大勇,岳恒,周平,柴天佑.基于智能优化控制的磨矿过程综合自动化系统[J].山东大学学报(工学版),2005,35(3):119-124. 被引量:19
  • 2李允俊.网络专家系统开发平台NESP的设计与实现[J].东北师大学报(自然科学版),2006,38(3):13-20. 被引量:2
  • 3周平,柴天佑.基于案例推理的磨矿分级系统智能设定控制[J].东北大学学报(自然科学版),2007,28(5):613-616. 被引量:16
  • 4周德炎,陈锦全,黄汉波.某选矿厂微细粒铅锌浮选试验研究[J].矿业研究与开发,2007,27(6):40-41. 被引量:7
  • 5Gao M W, Weller K R. A comparison of tumbling mills and stirred ball mills for wet grinding [ C ]///The Fitfth Mill Operators' Confer- ence, AuslMM, Roxby Downs, Australia, 1994:16-20.
  • 6Morrell S, Stems U H, Weller K R. The application of populationbalance models to very fine grinding in tower mills[ C] fflSth IMPC. Sydney, 1993 : 61 - 66.
  • 7Jankovic A. Variables affecting the fine grinding of minerals using stirred mills [ J ]. Minerals Engnieering, 2003 ( 16 ) : 337 - 345.
  • 8Stief D E, Lawruk W A, Wilson L J. Tower mill and its application to fine grinding [ J ~. Miner Metall Process, 1987 (4) : 45 - 50.
  • 9Zhang G W, Zhao X, Li Z Q, et al. Research and application of ver- tical screw stirred mill [ C ] //' 25th IMPC. Brisbane, 2010 : 1437 - 1443.
  • 10Liu Y, Spencer S. Dynamic simulation of grinding circuits [ J ]. Miner- als Engineering,2004(17) :1189-1198.

共引文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部