期刊文献+

一类一维齐次Moran集的维数结果 被引量:1

Results of the dimensions of a class of one dimensional homogeneous Moran sets
下载PDF
导出
摘要 为了研究一维齐次Moran集的维数,利用由基本区间形成的连通分支构造了一类{m_(k)}-齐次Moran集,证明该类集合的packing维数和上盒维数在supk{m_(k)}<∞时为所有一维齐次Moran集对应维数的最小值。此外,对于该类集合的上盒维数,得到在一些条件下的取值范围,并找到其达到准确值的一个充分条件。 In order to study the dimensions of one dimensional homogeneous Moran set,a class of homogeneous Moran set,{m_(k)}-homogeneous Moran set,is constructed by the connected components of the basic intervals,and the packing dimensions and the upper box dimensions of the sets are shown to obtain the minimum value of the one dimensional homogeneous Moran set under the condition sup k{m_(k)}<∞.Furthermore,the range of the upper box dimensions of the sets is obtained under some conditions,and a sufficient condition under which the upper box dimension gets the accurate value is found.
作者 乔育 付晓慧 李彦哲 QIAO Yu;FU Xiao-hui;LI Yan-zhe(School of Mathematics and Informnation Science,Guangxi University,Nanning 530004,China)
出处 《广西大学学报(自然科学版)》 CAS 北大核心 2022年第2期551-556,共6页 Journal of Guangxi University(Natural Science Edition)
基金 国家自然科学基金项目(11901121) 广西自然科学基金项目(2020GXNSFBA297040)。
关键词 一维齐次Moran集 {m_(k)}齐次Moran集 上盒维数 PACKING维数 连通分支 one dimensional homogeneous Moran set {m_(k)}-homogeneous Moran set upper box dimension packing dimension connected component
  • 相关文献

参考文献4

二级参考文献14

  • 1Li-feng XI~(1+) Huo-jun RUAN~2 1 Institute of Mathematics,Zhejiang Wanli University,Ningbo 315100,China,2 Department of Mathematics,Zhejiang University,Hangzhou 310027,China.Lipschitz equivalence of generalized {1,3,5}-{1,4,5} self-similar sets[J].Science China Mathematics,2007,50(11):1537-1551. 被引量:11
  • 2Dejun Feng,Zhiying Wen,Jun Wu.Some dimensional results for homogeneous Moran sets[J]. Science in China Series A: Mathematics . 1997 (5)
  • 3Yakov Pesin,Howard Weiss.On the dimension of deterministic and random Cantor-like sets, symbolic dynamics, and the Eckmann-Ruelle Conjecture[J]. Communications in Mathematical Physics . 1996 (1)
  • 4Moran,P.A.Additive functions of intervals and Hausdorff measure,Proc.Camb. Phil.Soc . 1946
  • 5Hua Su,Li Wen-Xia.Packing dimension of generalized Moran sets,Progr. Natur.Sci . 1996
  • 6Marion,J.Mesures do Hausdorff d’un fractals similitude interne,Ann.Sci.Math. Quebec . 1986
  • 7Feng De-Jun,Rao Hui,Wu Jun.The net measure properties for symmetric Cantor sets and their applications,Progr. Natur.Sci . 1997
  • 8Feng Dejun.Some problems in fractal geometry,Ph. . 1997
  • 9Hutchinson,J.E.Fractals and self-similarity,Indiana Univ. Mathematica Japonica . 1981
  • 10McMullen,C.The Hausdorff dimension of general Siepinski carpets,Nogaya Math. J . 1984

共引文献30

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部