期刊文献+

Vertical accuracy assessment of freely available digital elevation models over low-lying coastal plains 被引量:2

原文传递
导出
摘要 The frequency of coastal flood damages is expected to increase significantly during the twenty-first century as sea level rises in the coastal floodplain.Coastal digital elevation model(DEM)data describing coastal topography are essential for assessing future flood-related damages and understanding the impacts of sea-level rise.The Shuttle Radar Topography Mission(SRTM)and Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital Elevation Model(ASTER GDEM)are currently the most accurate and freely available DEM data.However,an accuracy assessment specifically targeted at DEMs over low elevation coastal plains is lacking.The present study focuses on these areas to assess the vertical accuracy of SRTM and ASTER GDEM using Ice,Cloud,and land Elevation Satellite,Geoscience Laser Altimeter System(ICESat/GLAS)and Real Time Kinematic(RTK)Global Positioning System(GPS)field survey data.The findings show that DEM accuracy is much better than the mission specifications over coastal plains.In addition,optical remote sensing image analysis further reveals the relationship between DEM vertical accuracy and land cover in these areas.This study provides a systematic approach to assess the accuracy of DEMs in coastal zones,and the results highlight the limitations and potential of these DEMs in coastal applications.
出处 《International Journal of Digital Earth》 SCIE EI CSCD 2016年第3期252-271,共20页 国际数字地球学报(英文)
基金 the National Natural Science Foundation of China(NSFC)[grant number 41301486] Joint Program of CAS-TWAS CoE SDIM on Space Technology for Disaster Mitigation in Asia[grant number Y3YI2702KB] the National Basic Research Program of China[grant number 2009CB723906] the National Natural Science Foundation of China[grant number 41071274].
  • 相关文献

同被引文献7

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部