摘要
针对传统客流量统计算法检测精度与速度难以平衡的问题,设计了一种面向嵌入式设备的扶梯客流量实时统计方法。首先,提出无失真缩放方法,以保持测试图像与训练样本的信息一致性,避免影响检测模型性能;此外,将YOLOv4-tiny检测模型通过降维模块、分组卷积进行优化,进而提出YOLOv4-tiny-fast网络,其在保证乘客检测准确率无损失的情况下大幅减少参数量,提高推理速度;最后,提出了一种结合自定义优化矩阵及遮挡处理的匹配算法,以较少的计算量解决了乘客跟踪问题。以实际环境中手扶电梯出入口视频进行实验,结果表明,在嵌入式设备平台,所提算法的客流量统计平均准确率达到96.66%,且平均检测速度达到25 f/s,优于已有算法。
For the difficulty in balancing the accuracy and speed of the traditional statistical calculation method,this study proposed a real-time statistics method of escalator passenger flow for embedded devices.Firstly,a distortion-free scaling method was proposed to maintain the consistency of information between the test and the training sample to avoid affecting the performance of the detection model.Sencondly,the YOLOv4-tiny detection model was optimized by a dimensionality reduction module and group convolution,and a YOLOv4-tiny-fast network was proposed,which significantly reduces the number of parameters and improves the inference speed while ensuring no loss of passenger detection accuracy.Finally,a matching algorithm combining custom optimization matrix and occlusion processing was proposed to solve the passenger tracking problem with less computational effort.The experiment was conducted with video of escalator entrances and exits in a real environment.The results show that the proposed algorithm achieves an average accuracy of 96.66%in passenger flow statistics on the embedded device platform,and the average detection speed reaches 25 f/s which is superior to existing algorithms.
作者
杜启亮
向照夷
田联房
DU Qiliang;XIANG Zhaoyi;TIAN Lianfang(School of Automation Science and Engineering,South China University of Technology,Guangzhou 510640,Guangdong,China;Key Laboratory of Autonomous Systems and Network Control of the Ministry of Education,South China University of Technology,Guangzhou 510640,Guangdong,China;Zhuhai Institute of Modern Industrial Innovation,South China University of Technology,Zhuhai 519175,Guangdong,China)
出处
《华南理工大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2022年第6期60-70,共11页
Journal of South China University of Technology(Natural Science Edition)
基金
广东省重点领域研发计划项目(2019B020214001,2018B010109001)
广州市产业技术重大攻关计划项目(2019-01-01-12-1006-0001)
华南理工大学中央高校基本科研业务费专项资金资助项目(2018KZ05)
华南理工大学研究生教育改革项目(zysk2018005)。
关键词
客流量统计
嵌入式设备
目标检测
目标跟踪
passenger flow statistics
embedded device
object detection
object tracking