期刊文献+

基于GM-ANN模型的路面性能预测方法 被引量:6

原文传递
导出
摘要 路面性能预测是公路路面管理系统中的核心技术难点,一直以来受限于分析手段、数据体量不足及数据维度低等多种因素影响,导致现有几类性能预测模型的预测值与实测值偏差较大。将路面病害以时间序列进行灰色系统(GM)分析,后以各类病害预测值为输入,借助人工神经网络(ANN)间接对路面状况指数(PCI)进行预测,构建基于人工智能的混合模型(GM-ANN)。最后选用地区随机路段进行实例验证,并同常用模型预测结果进行对比分析。结果显示:基于GM-ANN的混合预测模型更具较好的精度及可操作性,在实际工程应用中,可为大数据养护决策提供更准确、可靠的参考依据。
出处 《公路》 北大核心 2022年第6期364-368,共5页 Highway
  • 相关文献

参考文献5

二级参考文献28

共引文献34

同被引文献88

引证文献6

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部