摘要
路面性能预测是公路路面管理系统中的核心技术难点,一直以来受限于分析手段、数据体量不足及数据维度低等多种因素影响,导致现有几类性能预测模型的预测值与实测值偏差较大。将路面病害以时间序列进行灰色系统(GM)分析,后以各类病害预测值为输入,借助人工神经网络(ANN)间接对路面状况指数(PCI)进行预测,构建基于人工智能的混合模型(GM-ANN)。最后选用地区随机路段进行实例验证,并同常用模型预测结果进行对比分析。结果显示:基于GM-ANN的混合预测模型更具较好的精度及可操作性,在实际工程应用中,可为大数据养护决策提供更准确、可靠的参考依据。
出处
《公路》
北大核心
2022年第6期364-368,共5页
Highway