摘要
为了准确预测水质参数的变化趋势,基于回声状态网络(Echo state networks,ESN)对地表水质预测进行了试验。首先根据ESN的特点和训练步骤对ESN网络的重要参数进行分析;然后采用网格搜索(Grid Search,GS)算法对ESN的储备池规模、谱半径、泄漏率、正则化系数进行寻优;在此基础上,结合福建省某水库的真实监测数据建立GS-ESN水质预测模型,对该水库的溶解氧及高锰酸盐指标进行短期预测。结果表明,GS-ESN水质预测模型的准确性相对于经验调参方法有明显提高。
Surface water quality is predicted based on Echo State Networks(ESN)to accurately predict the variation trend of water quality parameters.The important parameters of ESN network are analyzed according to the characteristics and training steps of ESN.The Grid Search(GS)algorithm is used to optimize the reservoir scale,spectral radius,leaking rate and regularization coefficient of ESN.Based on the real monitoring data of a reservoir in Fujian Province,the GS-ESN water quality prediction model is established to predict the dissolved oxygen and permanganate index of the reservoir over a short period.Experimental results show that the accuracy of GS-ESN water quality prediction model is significantly improved comparing with the empirical adjustment method.
作者
翟肖昂
宋金玲
康燕
李院夫
林琢
ZHAI Xiaoang;SONG Jinling;KANG Yan;LI Yuanfu;LIN Zhuo(College of Mathematics and Information Technology,Hebei Normal University of Science&Technology,Qinhuangdao Hebei,066004;Hebei Agricultural Data Intelligent Perception and Application Technology Innovation Center,China)
出处
《河北科技师范学院学报》
CAS
2022年第2期82-88,共7页
Journal of Hebei Normal University of Science & Technology
基金
国家重点研发计划项目(项目编号:2019YFC1407903)
河北省重点研发计划项目(项目编号:21370103D,21370103D,21373301D)
河北省自然科学基金面上项目(项目编号:D2019407046)
2021年度河北省社会科学发展研究课题(课题编号:20210201445)
河北科技师范学院海洋专项(项目编号:2018HY020,2018HY013)
河北科技师范学院博士启动基金项目(项目编号:2019YB020)。
关键词
水质
预测
回声状态网络
网格搜索
超参优化
Water quality
prediction
echo state network
grid search
hyperparameter optimization