摘要
为了提高应用型高校创新创业教育数据分类效果,文章中设计了基于数据挖掘的应用型高校创新创业数据分类方法。进行数据分布预处理,设定特征数据分类目标,并设计模糊数据挖掘分类结构;构建双向关联数据挖掘分类模型,采用特征重构法,实现应用型高校创新创业数据分类。测试结果表明:文章所设计的方法最终得出的误分率低于12.08%,分类较为准确,分类效果较好,具有实际的应用效果。
In order to improve the data classification effect of innovation and entrepreneurship education in application-oriented colleges and universities,an innovation and entrepreneurship data classification method based on data mining is designed.Preprocess the data distribution,set the classification target of characteristic data,and design the classification structure of fuzzy data mining;Build a two-way association data mining classification model,and use the feat ure reconst r uction method to realize the in novation and ent repreneurship data classification of application-oriented colleges and universities.The test results show that the final misclassification rate of this design method is less than 12.08%,the classification effect is more accurate,the classification effect is better,and has practical application effect.
作者
尧雪莉
YAO Xueli(Nanchang Jiaotong I nstitute,Nanchang 330100,China)
出处
《数字通信世界》
2022年第6期194-196,共3页
Digital Communication World
基金
江西省高校人文社会科学研究项目:“供给侧改革背景下江西省应用型高校创新创业教育质量核心影响因素研究”,项目批准号:JY18241
江西省教育厅科技项目:基于狼群算法与小波神经网络的高速交通流量预测研究(项目编号:GJJ171487)。
关键词
数据挖掘
应用型
高校创新
创业数据
data mining
application
university innovation
entrepreneurial data