期刊文献+

稳态法实验研究Ga_(68)In_(20)Sn_(12)液态金属界面热阻特性 被引量:1

Experimental study of thermal resistance characteristics of Ga_(68)In_(20)Sn_(12) liquid metal by steady state method
下载PDF
导出
摘要 搭建了镓铟锡合金低温液态金属接触热阻实验平台,验证了实验系统的可靠性,对比了常规导热硅脂和液态金属的热阻特性,研究了压力、温度和界面特性对接触热阻的影响规律。实验结果表明,特征测点温度稳定变化且在稳态下具有很小的线性偏差(ε<6%),表明该实验系统具有较高的可靠性。与导热硅脂相比,在74 kPa的界面压力下液态金属的接触热阻降低约71%,且界面接触热阻随着压力的增加而降低。此外,界面温度的升高造成试件界面处液态金属导热系数降低,进而增加界面接触热阻。通过对铜表面镀镍处理能够有效防止液态金属对铜表面发生腐蚀,但镍层存在造成接触热阻增大。 An experimental system for thermal resistance of liquid metal was built.The reliability of experimental system,the thermal resistance characteristics of thermal grease and liquid metal,as well as the influence of pressure,temperature and surface characteristics on the thermal resistance were studied,respectively.The results indicate that the characteristic of temperature measurement and the small linear deviation of temperature under steady conditions(ε<6%)proved the reliability of the experimental system.Compared with thermal grease,the thermal contact resistance of liquid metal is reduced by about 71%at the pressure of 74 kPa.With the increase of interfacial pressure,the thermal resistance decreases.When interface temperature increases,the thermal conductivity of liquid metal decreases and hence the thermal resistance increases.Nickel plated surface can effectively prevent the corrosion of liquid metal to copper surface,but increase the contact thermal resistance.
作者 张岩 许锦阳 洪芳军 Zhang Yan;Xu Jinyang;Hong Fangjun(School of Mechanical Engineering,Shanghai Jiao Tong University,Shanghai 200240,China)
出处 《低温工程》 CAS CSCD 北大核心 2022年第3期46-51,63,共7页 Cryogenics
基金 国家重点研发计划中日能源-环境产业联合研究平台(No.2017YFE0127100)。
关键词 液态金属 接触热阻 热界面材料 界面温度 防腐涂层 liquid metal thermal resistance thermal interfacial materials interface temperature anticorrosive coating
  • 相关文献

参考文献6

二级参考文献37

  • 1顾慰兰,杨燕生.温度对接触热阻的影响[J].南京航空航天大学学报,1994,26(3):342-350. 被引量:14
  • 2赵剑衡,章冠人,刘绪发.激光辐照下充压柱壳结构变形的数值模拟[J].高压物理学报,1996,10(4):262-268. 被引量:27
  • 3Glass D E, Camarda C J, Merrigan M A, et al. Fabrication and testing of a leading edge-shaped heat pipe[R]. AIAA 1999-4866, 1999.
  • 4Greenwood J A, Williamson B P. Contact of nominally flat surfaces[J].Proceedings of the Royal Society: A, 1966, 295(1442): 300-319.
  • 5Cooper M G, Mikic B B, Yovanovich M M. Thermal contact condoctance[J].International Journal of Heat and Mass Transfer, 1969, 12(3): 279-300.
  • 6Zhao Y, Maietta D M, Chang L. An asperity model incorporating the transition from elastic deformation to fully plastic flow[J]. ASME Journal of Tribology, 2000, 122 (1): 86-93.
  • 7Tirovic M, Voller G P. Interface pressure distributions and thermal contact resistance of a bolted joint[J].Proceedings of the Royal Society: A, 2005, 461 (2060): 2339-2354.
  • 8Bahrami M, Culham J R, Yananovich M M, et al. Review of thermal joint resistance models for nonconforming rough surfaces[J]. Applied Mechanics Reviews, 2006, 59 (1): 1- 12.
  • 9Grujicic M, ghao C L, Dusel E C. The effect of thermal contact resisitance on heat management in the electronic packaging[J]. Applied Surface Science, 2005, 246(1-3): 290-302.
  • 10张恒兴.调制光热法低温真空下铜和不锈钢(304)接触界面热阻实验研究[D].武汉:华中科技大学,2010.

共引文献37

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部