摘要
考虑一类定义在无限维Banach空间上的半线性耦合发展方程组.利用方程组生成无限维动力系统的一个有限维不变流形,研究有限维约化问题.更详细地,利用有限维不变流形得到一个有限维系统(称之为约化系统),并澄清了原系统和约化系统之间吸引子和平衡解的关系.
The paper considers a class of coupled system of semilinear evolution equations defined on infinitedimensional Banach spaces.A finite-dimensional invariant manifold of infinite-dimensional dynamical system generated by the coupled system can be used to derive a reduction principle.More precisely,making use of the invariant manifold,we can obtain a finite-dimensional system(also called a reduced system),and clarify the connection of attractor and equilibrium between the original system and the reduced system.
作者
崔振琼
杨成明
王荣年
CUI Zhenqiong;YANG Chengming;WANG Rongnian(Mathematics and Science College,Shanghai Normal University,Shanghai 200234,China)
出处
《上海师范大学学报(自然科学版)》
2022年第3期257-262,共6页
Journal of Shanghai Normal University(Natural Sciences)
基金
国家自然科学基金(11971317,11471083)。
关键词
半线性耦合发展方程组
无限维动力系统
有限维不变流形
约化
coupled system of semilinear evolution equations
infinite-dimensional dynamical system
finitedimensional invariant manifold
reduction