期刊文献+

π-群强半格的同余

Congruence on a strong semilattice of π-groups
下载PDF
导出
摘要 一个半群是Clifford半群当且仅当它是群的强半格,π-群是群在π-正则半群范围内的推广.同余是研究半群性质和结构的重要手段和工具.研究了π-群的强半格上的正则同余,并给出了π-群强半格上的同余是正则同余的充要条件. It is well known that a semigroup is a Clifford semigroup,if and only if it is a strong semilattice of groups,and the class ofπ-groups is the generalization of groups in the range ofπ-regular semigroups.Congruence is an important tool when studying the characterization and structure of a semigroup.In this paper,we consider the regular congruences on a strong semilattice ofπ-groups,and give necessary and sufficient conditions for a congruence on a strong semilattice ofπ-groups to be a regular congruence.
作者 戴璐瑶 张建刚 申冉 DAI Luyao;ZHANG Jiangang;SHEN Ran(ShanghaiJiangning School,Shanghai 200060,China;Mathematics and Science College,Shanghai Normal University,Shanghai 200234,China;College of Science,Donghua University,Shanghai 201620,China)
出处 《上海师范大学学报(自然科学版)》 2022年第3期301-305,共5页 Journal of Shanghai Normal University(Natural Sciences)
基金 国家自然科学基金(11671056)。
关键词 Π-群 强半格 正则同余 正规子群 π-groups strong semilattice regular congruence normal subgroup
  • 相关文献

参考文献3

二级参考文献17

  • 1张建刚,刘国新.完全阿基米德半群上关系H~*(英文)[J].中国科学技术大学学报,2005,35(6):754-758. 被引量:1
  • 2ZHANG Jian-gang,SHEN Ran.Some Characterizations of GV-semigroups[J].Chinese Quarterly Journal of Mathematics,2007,22(1):104-108. 被引量:1
  • 3LALLEMENT G. Demi-groups reguliers[ J]. Ann Mat Pura Appl, 1967,77:47 -129.
  • 4PETRICH M. The translational hull of a completely 0-simple semigroup[ J]. Glasgow Math, 1968,9 : 1 - 11.
  • 5PETRICH M. The structure of completely regular semigroups [ J ]. TAMS, 1974,189:221 - 236.
  • 6SONG G T, ZHANG J G, LIU G X. Bitranslations of Completely Simple Semigroups [ J ]. Southest Asion Bulletion of Mathe- matics ,2006,30:107 - 122.
  • 7PETRICH M, REILLY N. Completely Regular semigroups[ M]. New york :John Weley & Sonc INC, 1999.
  • 8HOWIE J M. Fundamentals of Semigroup Theory [ M ]. Oxford : Oxford University Press Inc, 1995.
  • 9STOJAN BOGANOVIC. Semigroups with a System of Subsemigroups [ M ]. Novi Sad : University of Novi sad Institude of Mathematic, 1985.
  • 10Petrich M. A Lattice of Quasivarieties of Normal Cryptogroups[J].Semigroup Forum,2007,(01):45-69.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部