期刊文献+

采用轨迹压缩和路网划分的车辆异常轨迹检测 被引量:4

Vehicle Anomalous Detection Using Ttrajectory Compression and Road Network Partition
下载PDF
导出
摘要 随着各种网约车平台的蓬勃兴起,网约车犯罪率显著增加,而其行车轨迹往往表现出异常现象.为有效检测存在异常行为的轨迹,提出一种面向道路消耗的车辆异常轨迹检测算法.首先,将建模重点由轨迹数据转移到道路本身,对道路消耗进行建模,同时兼顾时间和距离的影响,有效提高了检测结果的准确性;其次,通过地图匹配概率将轨迹映射到路网空间,有效提高了参与检测的数据质量;然后,依据道路节点和车辆行驶方向是否改变对轨迹进行压缩,减少了内存消耗并提高了算法的效率;第四,提出并定义了消耗阈值矩阵的概念,扩大了算法检测的数据范围;最后,采用真实数据集验证了算法的有效性,并与iBOAT、TRAOD、TADSS和TPRO算法进行对比,验证了本算法具有更高的效率和准确性. With the burgeoning of car-hailing platforms,the crime rate of online car Hailing increases significantly,where vehicle trajectory often shows abnormal phenomenon.For effectively detecting abnormal trajectories,a vehicle anomalous trajectory detection algorithm for road consumptions was proposed.Firstly,we shift in focus of modeling from trajectories to roads,juggle the influence of time and distance,which effectively improves the accuracy of results.Secondly,trajectories are mapped on road network by map matching probability to improve the data quality.Then,according to road nodes and driving direction,trajectories are compressed to reduce the memory consumption and improve the efficiency of the algorithm.Fourth,we propose and define the concept of consumption threshold matrix,in which data′s range detected is expanded.Finally,the effectiveness of the algorithm is verified by real dataset,and compared with iBOAT,TRAOD,TADSS and TPRO,the algorithm has higher efficiency and accuracy.
作者 苏建花 赵旭俊 蔡江辉 SU Jian-hua;ZHAO Xu-jun;CAI Jiang-hui(School of Computer Science and Technology,Taiyuan University of Science and Technology,Taiyuan 030024,China)
出处 《小型微型计算机系统》 CSCD 北大核心 2022年第7期1438-1444,共7页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(U1731126,U1931209,61572343)资助 山西省应用基础研究计划项目(201901D111257,201901D211303)资助.
关键词 轨迹检测 地图匹配 轨迹压缩 路网划分 消耗阈值矩阵 trajectories detection map matching trajectory compression road network division consumption threshold matrix
  • 相关文献

参考文献5

二级参考文献34

  • 1宋莺,李清泉,郑年波.基于LBS的分布式车辆监控信息服务平台[J].计算机工程,2007,33(6):242-244. 被引量:8
  • 2Knorr EM, Ng RT, Tucakov V. Distance-Based outliers: Algorithms and applications. VLDB Journal, 2000,8(3):237-253.
  • 3Ramaswamy S, Rastogi R, Shim K. Efficient algorithms for mining outliers from large data sets. In: Chen WD, Jeffrey FN, Philip AB, eds. Proc. of the SIGMOD 2000. New York: ACM, 2000. 427-438.
  • 4Breunig MM, Kriegel HP, Ng RT, Sander J. LOF: Identifying density-based local outliers. In: Chen WD, Jeffrey FN, Philip AB, eds. Proc. of the SIGMOD 2000. New York: ACM, 2000.93-104.
  • 5Papadimitriou S, Kitagawa H, Gibbons PB, Faloutsos C. LOCI: Fast outlier detection using the local correlation integral. In: Dayal U, Ramamritham K, Vijayaraman TM, eds. Proc. of the ICDE 2003. New York: IEEE Computer Society, 2003.315-326.
  • 6Aggarwal CC, Yu PS. Outlier detection for high dimensional data. In: Aref WG, ed. Proc. of the SIGMOD 2001. New York: ACM, 2001.37-46.
  • 7Lee J, Han J, Li X. Trajectory outlier detection: A partition-and-detect framework. In: Proe. of the ICDE 2008. New York: IEEE Computer Society, 2008. 140-149.
  • 8Chen J, Maylor K. Leung, Gao Y. Noisy logo recognition using line segment hausdorff distance. Pattern Recognition, 2003,36(4): 943-955.
  • 9Huttenlocher DP, Klanderman GA, Rucklidge WA. Comparing images using the hausdorff distance. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1993,15(9):850-863.
  • 10Huttenlocher DP, Kcdem K, Sharir M. The upper envelope of voronoi surfaces and its applications. Discrete and Computational Geometry, 1993,9(1):267-291,.

共引文献88

同被引文献28

引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部