期刊文献+

基于数据流的矿山机电配套设备故障诊断模型 被引量:5

Fault diagnosis model of mine electromechanical auxiliary equipment based on data flow
下载PDF
导出
摘要 矿山开采工作对于机电设备的依赖度较高,为了提高矿山机电设备的故障诊断率,保证其稳定运行,构建了基于数据流的矿山机电配套设备故障诊断模型。采用低功耗和体积小的信号处理器采集矿山机电设备故障信号,基于数据流检测故障信号,并划分普通信号和故障信号,依据划分结果建立配套设备故障诊断模型,实现矿山机电配套设备故障诊断。实验结果证明,构建的设备故障诊断模型诊断准确率较高。 Mining work is highly dependent on electromechanical equipment.In order to improve the fault diagnosis rate of mine electromechanical equipment and ensure its stable operation,a fault diagnosis model of mine electromechanical equipment based on data flow was constructed.The signal processor with low power consumption and small size was used to collect the fault signal of mine electromechanical equipment,detected the fault signal based on the data stream,and divided the common signal and fault signal,and established the fault diagnosis model of the auxiliary equipment according to the division result,so as to realize the fault diagnosis of the mine electromechanical equipment.The experimental results showed that the fault diagnosis accuracy of the constructed model was high.
作者 赵振国 ZHAO Zhen-guo(Baiyangling Coal Mine of China Coal Xiyang Energy Co.,Ltd.,Jinzhong 045300,China)
出处 《煤炭科技》 2022年第3期90-93,99,共5页 Coal Science & Technology Magazine
关键词 矿山机电设备 配套设备 设备故障 数据流 故障诊断 信号采集 mine electromechanical equipment supporting equipment equipment failure data flow fault diagnosis signal acquisition
  • 相关文献

参考文献10

二级参考文献73

共引文献89

同被引文献33

引证文献5

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部