摘要
本文针对传统脱机手写体汉字识别特征提取非常困难的问题,文章在GoogLeNet网络的基础上搭建了一个适合脱机手写体汉字识别的卷积神经网络。文章首先介绍了卷积神经网络的基本原理和GoogLeNet网络中Inception模块的特点,然后通过激活函数,批量归一化,加入注意力机制等方法对网络进行优化。实验结果表明,改进后的神经网络准确率达到98.1%,相比于AlexNet,Xinception等卷积神经网络模型的识别准确率有明显的提高。
出处
《电子技术与软件工程》
2022年第9期190-193,共4页
ELECTRONIC TECHNOLOGY & SOFTWARE ENGINEERING
基金
安徽高校自然科学研究重点项目(项目号:KJ2020A1094)。