摘要
针对慕课(MOOC)评论中存在少数类特征偏移的问题,提出一种基于特征偏移补偿的深度智能化教学评价方法.该方法首先使用Glove预训练模型获取MOOC评论的分布式词向量;然后采用浅层卷积神经网络,通过多个卷积核学习教学评价的语义,引入不同类别评论的数量设计影响因子,归一化该影响因子并应用到交叉熵损失函数中;最后基于Coursera平台的本科学生教学评论数据集,通过与其他损失函数在F_(1),gmean, balance, gmeasure等评价指标上进行性能对比实验.实验结果表明,基于归一法的特征偏移补偿损失函数在gmeasure指标上比基类损失函数得到了最多15.40%的性能提升,并且采用该损失函数的分类模型也表现出较强的稳定性.
Aiming at the problems that there were feature deviation for the minority class in massive open online course(MOOC)reviews,we proposed a deep intelligent teaching evaluation method based on compensation for feature deviation.Firstly,this method used the Glove pre-training model to obtain the distributed word vectors of MOOC reviews.Secondly,the shallow convolutional neural networks were used to learn the semantics of teaching evaluation through multiple convolution kernels.The number of different types of reviews was introduced to design influence factors,which was normalized and applied to the cross-entropy loss function.Finally,the data set of undergraduate teaching reviews based on Coursera was compared with other loss functions on F_(1),gmean,balance,gmeasure and other evaluation indicators.The experimental results show that the loss function based on normalized feature deviation compensation has a performance improvement of up to 15.40%on gmeasure than the base loss function,and the classification model using this loss function also shows strong stability.
作者
李芳
曲豫宾
李龙
李梦鳌
LI Fang;QU Yubin;LI Long;LI Meng’ao(Guangxi Key Laboratory of Trusted Software,Guilin University of Electronic Technology,Guilin 541004,Guangxi Zhuang Autonomous Region,China;School of Marxism,Jiangsu College of Engineering and Technology,Nantong 226001,Jiangsu Province,China;School of Information Engineering,Jiangsu College of Engineering and Technology,Nantong 226001,Jiangsu Province,China;CSSC Systems Engineering Research Institute,Beijing 100094,China)
出处
《吉林大学学报(理学版)》
CAS
北大核心
2022年第3期697-704,共8页
Journal of Jilin University:Science Edition
基金
国家自然科学基金青年科学基金(批准号:61202006)
中国高等教育学会2021年度专项课题(批准号:21SZYB23)
江苏省教育科学“十四五”规划项目(批准号:D/2021/01/133)
江苏省现代教育技术研究项目(批准号:2021-R-94735)
广西可信软件重点实验室研究项目(批准号:KX202013
KX202046)
江苏工程职业技术学院科研计划项目(批准号:GYKY/2020/4)
南通市科技计划指令性项目(批准号:JC2021124)
江苏高校哲学社会科学研究项目(批准号:2020SJB0836)
江苏高校“青蓝工程”项目
江苏高校境外研修计划项目.
关键词
文本分类
特征偏移
卷积神经网络
text classification
feature deviation
convolutional neural network