期刊文献+

一种基于特征偏移补偿的深度智能化教学评价方法

A Deep Intelligent Teaching Evaluation Method Based on Compensation for Feature Deviation
下载PDF
导出
摘要 针对慕课(MOOC)评论中存在少数类特征偏移的问题,提出一种基于特征偏移补偿的深度智能化教学评价方法.该方法首先使用Glove预训练模型获取MOOC评论的分布式词向量;然后采用浅层卷积神经网络,通过多个卷积核学习教学评价的语义,引入不同类别评论的数量设计影响因子,归一化该影响因子并应用到交叉熵损失函数中;最后基于Coursera平台的本科学生教学评论数据集,通过与其他损失函数在F_(1),gmean, balance, gmeasure等评价指标上进行性能对比实验.实验结果表明,基于归一法的特征偏移补偿损失函数在gmeasure指标上比基类损失函数得到了最多15.40%的性能提升,并且采用该损失函数的分类模型也表现出较强的稳定性. Aiming at the problems that there were feature deviation for the minority class in massive open online course(MOOC)reviews,we proposed a deep intelligent teaching evaluation method based on compensation for feature deviation.Firstly,this method used the Glove pre-training model to obtain the distributed word vectors of MOOC reviews.Secondly,the shallow convolutional neural networks were used to learn the semantics of teaching evaluation through multiple convolution kernels.The number of different types of reviews was introduced to design influence factors,which was normalized and applied to the cross-entropy loss function.Finally,the data set of undergraduate teaching reviews based on Coursera was compared with other loss functions on F_(1),gmean,balance,gmeasure and other evaluation indicators.The experimental results show that the loss function based on normalized feature deviation compensation has a performance improvement of up to 15.40%on gmeasure than the base loss function,and the classification model using this loss function also shows strong stability.
作者 李芳 曲豫宾 李龙 李梦鳌 LI Fang;QU Yubin;LI Long;LI Meng’ao(Guangxi Key Laboratory of Trusted Software,Guilin University of Electronic Technology,Guilin 541004,Guangxi Zhuang Autonomous Region,China;School of Marxism,Jiangsu College of Engineering and Technology,Nantong 226001,Jiangsu Province,China;School of Information Engineering,Jiangsu College of Engineering and Technology,Nantong 226001,Jiangsu Province,China;CSSC Systems Engineering Research Institute,Beijing 100094,China)
出处 《吉林大学学报(理学版)》 CAS 北大核心 2022年第3期697-704,共8页 Journal of Jilin University:Science Edition
基金 国家自然科学基金青年科学基金(批准号:61202006) 中国高等教育学会2021年度专项课题(批准号:21SZYB23) 江苏省教育科学“十四五”规划项目(批准号:D/2021/01/133) 江苏省现代教育技术研究项目(批准号:2021-R-94735) 广西可信软件重点实验室研究项目(批准号:KX202013 KX202046) 江苏工程职业技术学院科研计划项目(批准号:GYKY/2020/4) 南通市科技计划指令性项目(批准号:JC2021124) 江苏高校哲学社会科学研究项目(批准号:2020SJB0836) 江苏高校“青蓝工程”项目 江苏高校境外研修计划项目.
关键词 文本分类 特征偏移 卷积神经网络 text classification feature deviation convolutional neural network
  • 相关文献

参考文献14

二级参考文献118

  • 1张珊,于留宝,胡长军.基于表情图片与情感词的中文微博情感分析[J].计算机科学,2012,39(S3):146-148. 被引量:55
  • 2张宁,贾自艳,史忠植.使用KNN算法的文本分类[J].计算机工程,2005,31(8):171-172. 被引量:98
  • 3周晓光,张强.Vague集(值)相似度量的比较和改进[J].系统工程学报,2005,20(6):613-619. 被引量:31
  • 4朱嫣岚,闵锦,周雅倩,黄萱菁,吴立德.基于HowNet的词汇语义倾向计算[J].中文信息学报,2006,20(1):14-20. 被引量:326
  • 5别文群,缪兴锋.网络课程的模糊综合评价模型研究[J].中国教育信息化(高教职教),2007(11S):20-23. 被引量:5
  • 6L.V.Morris. MOOCs Emerging Technologies and Quality[J].Innovative Higher Education, 2013,38 (4) : 251-252.
  • 7G. Conole. MOOCs as Disruptive Technologies : Strategies for Enhancing the Learner Experience and Quality of MOOCs[EB/OL]. [2013-06-07]. http://www.um.es/ead/red/39/conole.pdf.
  • 8J.Daniel. Making Sense of MOOCs : Musings in A Maze of Myth, Paradox and Possibility[J]. Journal of Interactive Media in Education, 2012, (3) : 1-20.
  • 9Kenneth R. Koedinger, Jihee Kim, etc. Learning is Not A Spectator Sport : Doing is Better Than Watching for Learning From A MOOC [A]. Gregor KiczalesL. L@S '15 Proceedings of the Second (2015) ACM Conference on Learning @ Scale [C]. Canada: Vancouver, 2015:111-120.
  • 10Diyi Yang, Miaomiao Wen,etc. Exploring the Effect of Confusion in Discussion Forums of Massive Open Online Courses [A]. Gregor KiczalesL. L@S '15 Proceedings of the Second (2015) ACM Conference on Learning @ Scale [C]. Canada: Vancouver, 2015 :121- 130.

共引文献401

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部