期刊文献+

多温冷藏车导风槽故障的智能识别

Intelligent Identification for Air Guide Groove Fault of Multi-temperature Refrigerated Truck
下载PDF
导出
摘要 针对多温冷藏车配送过程中导风槽(送风槽和回风槽)故障智能识别问题,通过模拟试验采集配送过程中车厢内的环境和食品温度变化,利用人工神经网络和监督学习算法构建一个基于温度数据的导风槽故障智能识别模型,以有效监控多温冷藏车在配送过程中导风槽的工作状态。结果表明,系统在仅采用冷藏区2个厢内温度传感器和1个车厢外温度传感器的布局条件下,应用精细树算法能实现对导风槽三种故障模式(回风槽堵塞、送风槽堵塞、导风槽风机关闭)的精准识别,识别准确度达到99.9%,这为构建多温冷藏车智能监控系统提供了重要支撑。 Aiming at the problem of intelligent identification of air guide groove(air supply groove and air return groove)fault in the operation of multi-temperature refrigerated truck,the environmental and food temperature changes in the compartment during the distribution process are collected through simulation experiments.The artificial neural network and supervised learning algorithm was used to construct an intelligent fault identification model of air guide groove based on temperature data,which could effectively predict the working state of air guide groove during the operation of multi-temperature refrigerated truck.The results show that the system can accurately identify the three fault modes of the air guide groove(the blockage of the return air groove,the blockage of the air supply groove and the closure of the air groove fan)with the accuracy of 99.9% under the condition of only using two temperature sensors inside the compartment and one temperature sensor outside the compartment by using the precision tree algorithm.This study provides an important support for the construction of intelligent monitoring system for multi-temperature refrigerated trucks.
作者 许世诺 邹毅峰 刘广海 曹文怡 李洪跃 XU Shi-nuo;ZOU Yi-feng;LIU Guang-hai;CAO Wen-yi;LI Hong-yue(School of Managemant,Guangzhou University,Guangzhou 510006,China)
出处 《物流工程与管理》 2022年第6期105-108,共4页 Logistics Engineering and Management
基金 广东省农产品保鲜物流共性关键技术研发创新团队项目(2021KJ145) 2021年广州大学大学生创新创业训练计划项目(XJ202111078204)。
关键词 多温冷藏车 导风槽 机器学习 故障识别 multi-temperature refrigerated truck air guide groove machine learning fault identification
  • 相关文献

参考文献8

二级参考文献71

  • 1邓建国,张素兰,张继福,荀亚玲,刘爱琴.监督学习中的损失函数及应用研究[J].大数据,2020,6(1):60-80. 被引量:39
  • 2韩新宇,车晶,臧润清,莫石佑.空气制冷系统在冷藏车中的应用[J].制冷空调与电力机械,2005,26(3):21-25. 被引量:7
  • 3肖玫,袁界平,陈连勇.食品安全的影响因素与保障措施探讨[J].农业工程学报,2007,23(2):286-289. 被引量:54
  • 4H K Versteeg, W Malalasekera. An introduction to computational fluid dynamics. The Finite Volume Method [ M]. England: Addison- Wesley, 1996, 57 -62, 74.
  • 5A K Datta, A A Teixeira. Numerical modeling of natural convection heating in canned liquid foods[ J]. Transaction of the ASAE, 1987, 30(5) :1 542- 1 551.
  • 6M L Hoang, P Verboven, J D Baerdemaker. Analysis of the air flow in a cold store by means of computational fluid dynamics[ J]. International Journal of Refrigeration, 2000,23 (2) : 127 - 140.
  • 7H Rouaud. Numerical investigation of the airflow in a food-processing clean room [ A ]. Proceedings of the I st international conference on simulation in food and bio-industfies[ C ]. Society of Computer Simulation International, The Netherlands, 2002, 48 - 51.
  • 8Z M Naima, M Jean, F Denis. Simplified modelling of air flows in refrigerated vehicles [ J ]. International Journal of Refrigeration, 2002,25(5) : 660-672.
  • 9P Verboven, N Scheerlinck,J D Baerdemaeker, et al. Computational fluid dynamics modelling and validation of the temperature distribution in a forced convection oven [ J ]. Journal of Food Engineering, 2000(43) : 61-73.
  • 10P Verboven, N Scheerlinck, J D Baerdemaeker,et al. Computational fluid dynamics modelling and validation of the isothermal airflow in a forced convection oven [ J ]. Journal of Food Engineering, 2000 (43) : 41 -53.

共引文献225

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部