摘要
本文介绍了生物电化学系统(BES)对抗生素的去除性能,总结了反应过程对微生物电解电池(MEC)性能和微生物燃料电池(MFCs)产电的影响,分析了BES耦合系统的处理效率,探讨了耐药细菌(ARB)和抗生素耐药性基因(ARGs)的归趋。分析认为:在MEC中,外加电压的大小影响抗生素降解效率,阴极提供电子并还原抗生素;抗生素的有效去除主要依靠BES中的共代谢降解或阳极直接氧化,抗生素可以充当唯一电子供体并且作为MFC发电的唯一碳源;在没有外接电源的情况下,一些耦合系统对抗生素的去除更为节能高效;降解抗生素的过程中,低电流可以促进ARGs通过垂直基因转移(VGT)和水平基因转移(HGT)传播,高电流则有望消除ARB和ARGs。
The removal of antibiotics by bioelectrochemical systems(BES)was introduced.The effects of reaction processes on the performance of microbial electrolytic cell(MEC)and the electricity production of microbial fuel cells(MFCs)were summarized.The treatment efficiency of the BES coupling system was analyzed,and the fate of antibiotic resistance bacteria(ARB)and antibiotic resistance genes(ARGs)was discussed.The analysis shows that in MEC,the magnitude of applied voltage affects the degradation efficiency of antibiotics,and the cathode provides electrons and reduces antibiotics.The effective removal of antibiotics in BES mainly depends on the co-metabolic degradation or direct oxidation in the anode.Antibiotics can act as the only electron donor and the only carbon source for MFC power generation.Some coupling systems are more energy-saving and efficient in the removal of antibiotics without external power supply.During the degradation of antibiotics,low currents can facilitate the propagation of ARGs through vertical gene transfer(VGT)and horizontal gene transfer(HGT),while high currents are expected to eliminate ARB and ARGs.
作者
王舒
刘兴翔
张宸僖
徐弘炜
杨泽
陈斌
张帅
WANG Shu;LIU Xingxiang;ZHANG Chenxi;XU Hongwei;YANG Ze;CHEN BIN;ZHANG Shuai(School of Environmental Science and Engineering,Nanjing University of Information Science&Technology,Nanjing 210044,China;Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control(AEMPC),Nanjing 210044,China;Collaborative Innovation Center of Atmospheric Environment and Equipment Technology(CIC-AEET),Nanjing 210044,China)
出处
《能源环境保护》
2022年第3期8-15,共8页
Energy Environmental Protection
基金
江苏省自然科学基金(BK20200816)。
关键词
抗生素
生物电化学系统
微生物燃料电池
微生物电解池
抗生素耐药基因
Antibiotics
Bioelectrochemical systems
Microbial fuel cells
Microbial electrolysis cells
Antibiotic resistance genes