期刊文献+

基于LSGAN-SqueezeNet的轴承故障诊断研究 被引量:7

A study on bearing fault diagnosis based on LSGAN-SqueezeNet
下载PDF
导出
摘要 在滚动轴承的故障诊断过程中,需要大量的故障样本对模型进行训练,但由于工程实际环境较为复杂,难以采集到足量的轴承故障样本。提出基于最小二乘生成对抗网络(least squares generative adversarial networks,LSGAN)结合SqueezeNet在样本数据量不足条件下滚动轴承故障诊断的方法。该方法首先利用滚动轴承的原始样本训练LSGAN,生成不同状态下的轴承信号样本,采用SqueezeNet对真实样本与生成样本进行模型训练,实现样本数据量不足条件下的轴承故障诊断。通过凯斯西储大学及德国帕德博恩大学的滚动轴承试验数据对所提轴承故障诊断方法进行验证。试验结果表明,真实样本结合生成样本训练模型,对故障的诊断准确率均达到99.7%,该方法具有较高的诊断精度。实现了样本数据量不足条件下故障诊断的可行性及验证其泛化性,且有效提高了故障诊断的准确率、降低了训练成本。 In the process of rolling bearing fault diagnosis,a large number of fault samples are needed to train amodel.It is difficult to collect a sufficient number of bearing fault samples due to the complex engineering environment.A new method of rolling bearing fault diagnosis based on the least squares generated adversary networks(LSGAN)and the SqueezeNet under the condition of insufficient sample data was proposed.Firstly,LSGAN was trained by using the original samples of rolling bearings to generate bearing signal samples in different states.Real samples and generated samples were trained by the SqueezeNet,and the bearing fault diagnosis was realized under the condition of insufficient sample data.The proposed method was verified by the rolling bearing experimental data of Case Western Reserve University and Paderborn University.The experimental results show that accuracy of the fault diagnosis is 99.7%.The LSGAN-SqueezeNet model has high diagnostic accuracy.It not only realizes the feasibility of fault diagnosis and verifies its generalization,but also effectively improves the accuracy of fault diagnosis and reduces the training cost.
作者 刘杰 李长杰 苏宇涵 孙兴伟 LIU Jie;LI Changjie;SU Yuhan;SUN Xingwei(School of Mechanical Engineering,Shenyang University of Technology,Shenyang 110870,China)
出处 《振动与冲击》 EI CSCD 北大核心 2022年第12期293-300,共8页 Journal of Vibration and Shock
基金 辽宁省教育厅(LQGD2020016) 辽宁省“兴辽英才计划”资助项目(XLYC1905003)。
关键词 最小二乘生成对抗网络 轴承故障诊断 卷积神经网络 二维灰度图 least square generation countermeasure network bearing fault diagnosis convolution neural network 2D gray pixel images
  • 相关文献

参考文献12

二级参考文献114

  • 1李兵,韩睿,何怡刚,张晓艺,侯金波.改进随机森林算法在电机轴承故障诊断中的应用[J].中国电机工程学报,2020,40(4):1310-1319. 被引量:78
  • 2宫文峰,陈辉,张美玲,张泽辉.基于深度学习的电机轴承微小故障智能诊断方法[J].仪器仪表学报,2020,41(1):195-205. 被引量:85
  • 3杨宇,于德介,程军圣.基于EMD与神经网络的滚动轴承故障诊断方法[J].振动与冲击,2005,24(1):85-88. 被引量:144
  • 4GRAHAM-ROWE D, GOLDSTON D, DOCTOROW C, et al. Big data: Science in the petabyte era[J]. Nature, 2008, 455(7209): 8-9.
  • 5HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504-507.
  • 6KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks[C]//Advances in Neural Information Processing Systems, 2012: 1097-1105.
  • 7BALDI P, SADOWSKI P, WHITESON D. Searching for exotic particles in high-energy physics with deep learning[J]. Nature Communications, 2014, 5(1): 1-9.
  • 8WORDEN K, STASZEWSKI W J, HENSMAN J J. Natural computing for mechanical systems research: A tutorial overview[J]. Mechanical Systems and Signal Processing, 2011, 25(1): 4-111.
  • 9BENGIO Y. Learning Foundations and Trends 2(1): 1-127. deep architectures for AI[J] in Machine Learning, 2009,.
  • 10ERHAN D, BENGIO Y, COURVILLE A, et al. Why does unsupervised pre-training help deep learning?[J]. The Journal of Machine Learning Research, 2010, 11: 625-660.

共引文献668

同被引文献53

引证文献7

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部