摘要
传感信号检测中常用到非刚性耦合混沌振子,对非刚性耦合混沌振子进行数值求解时常用定步长4阶龙格库塔法,但是其具有运算量大、运算速度慢的缺点。为了提升非刚性耦合混沌振子数值求解的速度,给出了一种半隐式的并行算法,其运算速度是定步长4阶龙格库塔法的一倍。仿真与实验结果表明,该并行算法在4阶精度时和定步长4阶龙格库塔法有类似的计算精度,而在实际信号检测任务中采用2阶精度的并行算法即能满足需求。
Non-rigid coupled chaotic oscillators are often used in sensing signal detection.The method of fixed step fourth order Runge-Kutta is often used in numerical solution of non-rigid coupling chaotic oscillators,but it has the disadvantages of large amount of calculation and slow computation speed.In order to speed up the computation of non-rigid coupled chaotic oscillators,a semi-implicit parallel algorithm is proposed,which is twice the speed of fixed step fourth order Runge-Kutta method.The simulation experimental results show that the parallel algorithm has the same accuracy as fourth order Runge-Kutta method under the condition of fourth-order accuracy,and the parallel algorithm with the second order accuracy can meet the requirements in actual signal detection tasks.
作者
姜敏敏
罗文茂
赵力
JIANG Minmin;LUO Wenmao;ZHAO Li(Nanjing Vocational College of Information Technology,Nanjing Jiangsu 210023,China;School of Information Science and Engineering,Southeast University,Nanjing Jiangsu 210096,China)
出处
《传感技术学报》
CAS
CSCD
北大核心
2022年第4期518-522,共5页
Chinese Journal of Sensors and Actuators
基金
江苏省高校“青蓝工程”优秀青年骨干教师培养计划
国家重点研发计划资助项目(2018YFB1305203)
校级横向课题资助项目(HX20220604)。
关键词
信号检测
并行计算
半隐式
耦合混沌振子
非刚性常微分方程
递推方法
signal detection
parallel computing
semi-implicit
coupled chaotic oscillator
non-rigid ordinary differential equations
recursive method