期刊文献+

HSF1 facilitates the multistep process of lymphatic metastasis in bladder cancer via a novel PRMT5-WDR5-dependent transcriptional program 被引量:2

原文传递
导出
摘要 Background:Lymphatic metastasis has been associated with poor prognosis in bladder cancer patients with limited therapeutic options.Emerging evidence shows that heat shock factor 1(HSF1)drives diversified transcriptome to promote tumor growth and serves as a promising therapeutic target.However,the roles of HSF1 in lymphatic metastasis remain largely unknown.Herein,we aimed to illustrate the clinical roles and mechanisms of HSF1 in the lymphatic metastasis of bladder cancer and explore its therapeutic potential.Methods:We screened the most relevant gene to lymphatic metastasis among overexpressed heat shock factors(HSFs)and heat shock proteins(HSPs),and analyzed its clinical relevance in three cohorts.Functional in vitro and in vivo assays were performed in HSF1-silenced and-regained models.We also used Coimmunoprecipitation to identify the binding proteins of HSF1 and chromatin immunoprecipitation and dual-luciferase reporter assays to investigate the transcriptional program directed by HSF1.The pharmacological inhibitor of HSF1,KRIBB11,was evaluated in popliteal lymph node metastasis models and patientderived xenograft models of bladder cancer.Results:HSF1 expression was positively associated with lymphatic metastasis status,tumor stage,advanced grade,and poor prognosis of bladder cancer.Importantly,HSF1 enhanced the epithelial-mesenchymal transition(EMT)of cancer cells in primary tumor to initiate metastasis,proliferation of cancer cells in lymph nodes,and macrophages infiltration to facilitate multistep lymphatic metastasis.Mechanistically,HSF1 interacted with protein arginine methyltransferase 5(PRMT5)and jointly induced the monomethylation of histone H3 at arginine 2(H3R2me1)and symmetric dimethylation of histone H3 at arginine 2(H3R2me2s).This recruited the WD repeat domain 5(WDR5)/mixed-lineage leukemia(MLL)complex to increase the trimethylation of histone H3 at lysine 4(H3K4me3);resulting in upregulation of lymphoid enhancer-binding factor 1(LEF1),matrix metallopeptidase 9(MMP9),C-C motif chemokine ligand 20(CCL20),and E2F transcription factor 2(E2F2).Application of KRIBB11 significantly inhibited the lymphatic metastasis of bladder cancer with no significant toxicity.Conclusion:Our findings reveal a novel transcriptional program directed by the HSF1-PRMT5-WDR5 axis during the multistep process of lymphatic metastasis in bladder cancer.Targeting HSF1 could be a multipotent and promising therapeutic strategy for bladder cancer patients with lymphatic metastasis.
出处 《Cancer Communications》 SCIE 2022年第5期447-470,共24页 癌症通讯(英文)
基金 National Key Research and Development Program of China,Grant/Award Number:2018YFA0902803 National Natural Science Foundation of China,Grant/Award Numbers:81825016,82072827,81961128027,81702523,81972383,82102957 Guangdong Basic and Applied Basic Research Foundation,Grant/Award Numbers:2021B1515020009,2020A1515010888,2019A1515010188 Science and Technology Program of Guangzhou,Grant/Award Number:202102010002 Guangdong Special Support Program,Grant/Award Number:2017TX04R246 Guangdong Province Higher Vocational Colleges&Schools Pearl River Scholar Funded Scheme(for Tianxin Lin) Guangdong Provincial Clinical Research Center for Urological Diseases,Grant/Award Number:2020B1111170006 Guangdong Science and Technology Department,Grant/Award Numbers:2020B1212060018,2018B030317001。
  • 相关文献

同被引文献3

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部