期刊文献+

TiB/Ti基复合材料的微观组织和力学性能 被引量:5

Microstructure and mechanical properties of TiB/Ti matrix composites
下载PDF
导出
摘要 首先在纯Ti中添加MoB_(2)粉末,通过原位反应生成了TiB金属间化合物,随后采用非自耗电弧熔炼炉制备TiB/Ti基复合材料。采用X射线衍射(XRD)、光学显微镜(OM)、扫描电镜(SEM)、硬度测试和万能材料试验机等研究了TiB金属间化合物对TiB/Ti基复合材料的相结构、显微组织和力学性能的影响。结果表明:TiB/Ti基复合材料主要由α相、α′相、β相和TiB金属间化合物相组成;随着MoB_(2)添加量的增加,复合材料发生了Ti+MoB_(2)→α/α′(Ti)+β(Ti)+TiB的相变过程。原位反应生成的TiB增强相的相对含量随着MoB_(2)添加量的增加而增加。TiB增强相的形态均呈现出短棒状和纤维状。此外,随着MoB_(2)添加量的增加,TiB/Ti基复合材料的压缩屈服强度以及显微硬度大幅度提升,而其压缩应变则逐渐降低。当MoB_(2)添加量为7.5 mass%时,TiB/Ti基复合材料的压缩屈服强度和显微硬度分别为1095 MPa和397 HV0.2,而最大压缩强度和压缩应变则分别为1337 MPa和13.0%。TiB/Ti基复合材料的加工硬化指数随着MoB_(2)含量的增加从0.978降低至0.252。 Firstly, MoB_(2)powder was added to pure Ti to form TiB intermetallic compound by in-situ reaction, and then TiB/Ti matrix composites were prepared by non consumable arc melting furnace. Effect of TiB intermetallic compound on phase, microstructure and mechanical properties of the TiB/Ti matrix composites was studied by means of X-ray diffraction(XRD), optical microscope(OM), scanning electron microscopy(SEM), micro-hardness tester and universal material testing machine. The results show that the TiB/Ti matrix composites are mainly composed of α phase, α′ phase, β phase and TiB intermetallic compound phase. With the increase of MoB_(2)content, the Ti+MoB_(2)→α/α′(Ti)+β(Ti)+TiB phase transition occurs in the composites. The relative content of the TiB reinforced phase produced by in-situ reaction increases with the increase of MoB_(2)addition. The morphology of the TiB reinforced phase is short rod-like and fiber. In addition, with the increase of MoB_(2)addition, the compressive yield strength and microhardness of the TiB/Ti matrix composites increase significantly, while the compressive strain decreases gradually. When the addition amount of MoB_(2)is 7.5 mass%, the compressive yield strength and microhardness of the TiB/Ti matrix composites are 1095 MPa and 397 HV0.2, respectively, while the maximum compressive strength and compressive strain are 1337 MPa and 13.0% respectively. The work hardening index of the TiB/Ti matrix composites decreases from 0.978 to 0.252 with the increase of MoB_(2)content.
作者 吴倩 景然 刘以柔 张雄 张晴 张曼雪 李江华 炊鹏飞 WU Qian;JING Ran;LIU Yi-rou;ZHANG Xiong;ZHANG Qing;ZHANG Man-xue;LI Jiang-hua;CHUI Peng-fei(School of Materials Science and Engineering,Shaanxi University of Technology,Hanzhong 723000,China;National&Local Joint Engineering Laboratory for Slag Comprehensive Utilization and Environmental Technology,Shaanxi University of Technology,Hanzhong 723000,China)
出处 《材料热处理学报》 CAS CSCD 北大核心 2022年第6期12-18,共7页 Transactions of Materials and Heat Treatment
基金 国家自然科学基金(51701111,51901120) 陕西省自然科学基础研究计划项目(2019JQ-881,2020JQ-871) 陕西省教育厅专项科研计划项目(19JK0170) 陕西理工大学矿渣综合利用环保技术国家地方联合工程实验室开放基金项目(SLGPT2019KF01-07)。
关键词 TiB/Ti基复合材料 相结构 显微组织 力学性能 原位反应 TiB/Ti matrix composites phase structure microstructure mechanical property in-situ reaction
  • 相关文献

参考文献2

二级参考文献39

  • 1M. Geetha, A. Singh, R. Asokamani, A. Gogia, Prog. Mater. Sci. 54 (2009) 397-425.
  • 2D. Banerjee, J. Williams, Acta Mater. 61 (2013) 844-879.
  • 3S.E. Haghighi, H. Lu, G. Jian, G. Cao, D. Habibi, L.C. Zhang, Mater. Des. 76 (2015) 47-54.
  • 4H. Attar, L. L0ber, A. Funk, M. Calin, L.C. Zhang, K.G. Prashanth, S. Scudino, Y. Zhang, J. Eckert, Mater. Sci. Eng. A 625 (2015) 350-356.
  • 5S.M. Ahmadi, S.A. Yavari, R. Wauthle, B. Pouran, J. Schrooten, H. Weinans, A.A, Zadpoor, Materials 8 (2015) 1871-7896.
  • 6H. Attar, K.G. Prashanth, A. Chaubey, M. Calin, L.C. Zhang, S. Scudino, J. Eckert, Mater. Lett. 142 (2015) 38-41.
  • 7T. Gofrey, P. Goodwin, C.M. Ward-Close, Adv. Eng. Mater. 2 (2000) 85-91.
  • 8K. Kondoh, T. Threrujirapapong, H. Imai, J. Umeda, B. Fugetsu, Compos. Sci. Technol. 69 (2009) 1077-1081.
  • 9R. Bejjani, B. Shi, H. Attia, M. Balazinski, CIRP Ann. - Manuf. Techn. 60 (2011 ) 61-64.
  • 10K.R. Chandran, K. Panda, S. Sahay, JOM 56 (2004) 42-48.

共引文献25

同被引文献66

引证文献5

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部