期刊文献+

Operational Risk-averse Routing Optimization for Cyber-physical Power Systems

原文传递
导出
摘要 The extensive application of modern information and communication technology in the power system through the in-depth integration of the information system and the power system has led to the gradual development of the cyberphysical power system(CPPS).While advanced information technology increases the safety and reliability of power system operations,it also increases the risks of fault propagation.To improve the reliability of CPPS from the perspective of power communication routing,it is proposed that the CPPS model and vulnerability assessment of power node reflect the correlation between information and energy flows with the service impact on power grid operation,which is an important index for evaluating communication services.According to the distribution of services at the different important levels on the links,the importance of the cross-layer link is established as the vulnerability evaluation index of the communication network.Then,the routing optimization model is proposed in combination with the service transmission risk under cyber-attack and the operating characteristics of the information system,which is solved through an improved fast-convergent genetic algorithm.The simulation results show that the proposed method allocates the alternate route to the low-risk link without significantly increasing the delay of the main route,which effectively improves the power supply reliability of CPPS in extreme cyber-attack scenarios.
出处 《CSEE Journal of Power and Energy Systems》 SCIE EI CSCD 2022年第3期801-811,共11页 中国电机工程学会电力与能源系统学报(英文)
基金 supported by the National Key Research and Development Program of China under Grant 2016YFB0901100.
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部