期刊文献+

基于数据挖掘的入侵检测 被引量:11

Intrusion Detection Based on Data Mining
下载PDF
导出
摘要 随着计算机网络在现代社会中扮演日益重要的角色 ,信息安全成为信息技术研究领域最重要的研究课题之一。而入侵构成了严重的安全风险 ,如何有效防范和检测入侵行为是信息监管中的热点研究问题。传统入侵检测模型的建立过程效率低 ,研究成本高 ,而数据挖掘在未知知识获取方面具有独特优势 ,因此基于数据挖掘的入侵检测成为研究热点。针对入侵现状、入侵检测和数据挖掘研究及开发状况 ,笔者分析了基于数据挖掘的入侵检测研究背景、体系结构、研究方法、所需解决的问题及今后的研究方向。 As computer networks play increasingly vital roles in modern society, information security becomes one of the most important research issues in the field of information technology. But intrusions cause a serious security risk, how to efficiently prevent and detect intrusions becomes one of hot research problems in the field of information supervision. The traditional process of building the model of intrusion detection is slow, whose cost of research and development is high. However, data mining has unique advantages in acquiring unknown knowledge. So, intrusion detection based on data mining becomes a hot issue. The research background, architectures, techniques, problems to be solved and the future direction are discussed after analyzing current status of network intrusion and situation of R&D on intrusion detection and data mining.
出处 《重庆大学学报(自然科学版)》 EI CAS CSCD 北大核心 2002年第10期128-131,135,共5页 Journal of Chongqing University
基金 重庆市应用基础研究项目 (680 1)
关键词 入侵检测 数据挖掘 信息安全 计算机网络 网络安全 体系结构 intrusion detection data mining information security
  • 相关文献

参考文献16

  • 1[1]UNITED STATES GENERAL ACCOUNTING OFFICE.Information Security: computer attacks at department of defense pose increasing risks[R].USA:GAO/AIMD-96-84,1996.
  • 2[2]UNITED STATES GENERAL ACCOUNTING OFFICE.Information Security: opportunities for improved OMB oversight of agency practices[R].USA:GAO/AIMD-96-110,1996.
  • 3[3]CERT COORDINATION CENTER.CERT/CC Overview: Incident and Vulnerability Trends[R].USA:Software Engineering Institute,Carnegie Mellon University,Pittsburgh,2000.
  • 4[4]ALLEN J,CHRISTIE A,FITHEN W,et al.State of the Practice of Intrusion Detection Technologies[R].USA:Software Engineering Institute,Carnegie Mellon University,Pittsburgh,1999.
  • 5[5]ANDERSON J P.Computer security threat monitoring and surveillance[R].USA:James P.Anderson Co.,April 1980.
  • 6[6]DENNING D E,NEUMANN P G.Requirements and model for IDES-A real-time intrusion detection system[R].USA:Computer Science Laboratory,SRI International,CA,1985.
  • 7[7]SEBRING M M,SHELLHOUSE E,HANNA M E,et al.Expert systems in intrusion detection: A case study[A].Proceedings of the 11th National Computer Security Conference[C],Baltimore,Maryland,October 1988.74~81.
  • 8[8]AXELSSON S.Research in Intrusion-Detection Systems: A Survey[R].Chalmers University of Technology,Gteborg,Sweden,August 1999.
  • 9[9]KVARNSTR*;M H.A survey of commercial tools for intrusion detection[R].Chalmers University of Technology,Gteborg,Sweden,1999.
  • 10[10]AGRAWAL R,IMIELINSKI T,SWAMI A.Database mining: A performance perspective[J].IEEE Transactions on Knowledge and Data Engineering,December 1993.5(6):914~925.

同被引文献41

  • 1吕锡香,杨波,裴昌幸,苏晓龙.基于数据挖掘的入侵检测系统检测引擎的设计[J].西安电子科技大学学报,2004,31(4):574-580. 被引量:10
  • 2刘莘,张永平,万艳丽.决策树算法在入侵检测中的应用分析及改进[J].计算机工程与设计,2006,27(19):3641-3643. 被引量:27
  • 3唐正军.网络入侵检测系统的设计与实现[M].北京:电子工业出版社,2006.
  • 4张翰帆.基于数据挖掘的入侵检测系统[D].南京:工业大学,2004.
  • 5戴英侠 连一峰 王航.系统安全与入侵检测[M].北京:清华大学出版社,2003..
  • 6张银奎.数据挖掘原理[M].北京:机械工业出版社,2003..
  • 7LEE W. A Data Mining Framework for Constructing Features and Models for Intrusion Detection Systems [D]. USA: Columbia University,1999.
  • 8Kumar G. Classification and Detection of Computer intrusion [D]. USA: Purdue University,1995.
  • 9Fayyad U, Haussler D, solorz P. Mining Scientific Data[J]. Communications of the ACM, 1996,39 ( 11 ):51-57.
  • 10Spafford E H, Zambonl D. Intrusion Detection Using Autonomous Agents[J]. Computer Networks, 2000,34(4) :47-52.

引证文献11

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部