摘要
激光供能无人机操作简单、安全性高,其采用光伏电池板接收能量进行作业。在复杂遮荫情况下,无人机上光伏电池板的P-V曲线存在多极值点问题,传统最大功率点追踪算法易陷入局部最优且追踪速度较慢等。针对这一问题提出了一种改进的蝙蝠算法,首先通过反向学习进行种群初始化,增强群体分布的均匀性,避免陷入局部最优;同时引入收缩因子,加快算法收敛速度。最后在Matlab/Simulink中搭建光伏阵列电路仿真模型证明了改进的蝙蝠算法在具有较好的速度性和稳定性。
Laser-powered drones are simple to operate and with high safety,which use photovoltaic panels to receive energy for operation.Under complex shading conditions,the P-V curve of the photovoltaic panel on the UAV has multiple extreme points.The traditional maximum power point tracking algorithm is easy to fall into the local optimum and the tracking speed is slow.Aiming at this problem,an improved bat algorithm is proposed.First,the population is initialized through reverse learning to enhance the uniformity of the population distribution and avoid falling into the local optimum.At the same time,the shrinkage factor is introduced to accelerate the algorithm′s convergence speed.Finally,a simulation model of the photovoltaic array circuit is built in Matlab/Simulink to prove that the improved bat algorithm has better speed and stability.
作者
袁建华
王林
赵子玮
何宝林
刘宇
YUAN Jian-hua;WANG Lin;ZHAO Zi-wei;HE Bao-lin;LIU Yu(School of Electrical and New Energy,Three Gorges University,Yichang 443000,China)
出处
《激光与红外》
CAS
CSCD
北大核心
2022年第6期814-819,共6页
Laser & Infrared
基金
煤燃烧国家重点实验室开放基金项目(No.FSKLCCA1607)
梯级水电站运行与控制湖北省重点实验室基金项目(No.2015KJX07)
产学研协同培养研究生实践创新能力机制研究项目(No.SDYJ201604)资助。
关键词
激光供能
无人机
光伏电池板
最大功率点追踪
改进蝙蝠算法
laser energy supply
UAV
photovoltaic cell board
maximum power point tracking
improved bat algorithm