期刊文献+

基于双模特征强化注意力网络的新生儿脑组织图像分割 被引量:1

Neonatal brain tissue image segmentation based on a bimodal feature-boosted attention network
原文传递
导出
摘要 目的探讨基于双模特征强化注意力网络的新生儿脑组织图像分割方法及其应用价值。方法针对T1和T2双模态新生儿脑磁共振图像, 在编码路径采用双模特征提取、可分离卷积和空间-通道注意力, 在解码路径引入可分离卷积。采用数据互补性和完备性对提取的双模特征进行融合构建潜在统一表达, 使用跳跃卷积连接编码路径和解码路径来增强信息传送。结果基于双模特征强化注意力网络的新生儿脑组织图像分割方法能够准确分割白质、灰质和脑脊液, 超过现有基准方法。结论基于双模特征强化注意力网络的新生儿脑组织图像分割方法不仅改善图像分割的准确性和有效性, 还可促进磁共振成像技术在新生儿大脑生长发育和健康评估的临床应用。 Objective To explore a method for neonatal brain tissue segmentation based on bimodal feature-boosted attention network(BFAN)and its value in clinical use.Methods T1-and T2-weighted MR images of neonatal brain were processed with BFAN,whose encoder path was supported by bimodal feature extraction,separable convolution and spatial-channel attention,and the decoder path involved separable convolution.The extracted bimodal features were fused to build up latent common representation by using complementarity and completeness of the bimodal data.Skip convolution was used to connect the encoder and decoder paths to enhance information transmission.Results BFAN-based segmentation of neonatal brain tissue image could accurately segment the images into white matter,gray matter and cerebrospinal fluid,out-performing the benchmarking modality currently available.Conclusion BFAN-based neonatal brain tissue segmentation improves not only the accuracy and effectiveness of image segmentation,but also promotes clinical use of MRI techniques in assessing the brain development and health in neonates.
作者 李瑾航 章勇勤 单士玺 李展 范训礼 Li Jinhang;Zhang Yongqin;Shan Shixi;Li Zhan;Fan Xunli(School of Information Science and Technology,Northwestern University,Xi'an 710127,China)
出处 《中华生物医学工程杂志》 CAS 2022年第2期126-132,共7页 Chinese Journal of Biomedical Engineering
基金 国家自然科学基金(62173270) 陕西省青年科技新星(2020KJXX-007) 陕西省自然科学基础研究计划(2019JM-103) 陕西省社会科学基金(2019H010、2021G003)。
关键词 深度学习 神经网络 图像分割 磁共振成像 Deep learning Neural network Image segmentation Magnetic resonance imaging
  • 相关文献

参考文献5

二级参考文献25

  • 1章毓晋.图像工程-图像处理和分析[M].北京:清华大学出版社,2002:12-145.
  • 2Pal NR,Pal SK.A Review on Image Segmentation Techniques[J].Pattern Recognition,1993,(26):1277-1294.
  • 3Yang XY,Liu J.Unsupervised texture segmentation with one-step means shift and boundary Markov random fields[J].Pattern Recognition Letters,2001,22(10):1073-1081.
  • 4Izquierdo JMC,Dimitriadis YA,Sanchez EG,Sanchez EG,Coronado JL.Learning from noisy information in FasArt and FasBack neuro-fuzzy systems[J].Neural Networks,2001,14(4-5):407-425.
  • 5Bandera A,Urdiales C,Arreblole F,et al.scale-Dependent hierarchical unsupervised segmentation of texture imnges[J].Pattern Recognition Letters,2001,22(2):170-175.
  • 6A Bieniek,A Moga.An efficient watershed algorithm based on connect components[J].Pattern Recognition,2000,(3):907-916.
  • 7罗惠韬,章毓晋.一个图象分割评价实例及讨论[J].数据采集与处理,1997,12(1):18-22. 被引量:21
  • 8陈志彬,邱天爽,SU Ruan.一种基于FCM和LevelSet的MRI医学图像分割方法[J].电子学报,2008,36(9):1733-1736. 被引量:26
  • 9贾迪,杨金柱,张一飞,赵大哲,于戈.自适应脑组织影像分割[J].吉林大学学报(工学版),2012,42(1):161-165. 被引量:3
  • 10沈夏炯,吴晓洋,韩道军.分水岭分割算法研究综述[J].计算机工程,2015,41(10):26-30. 被引量:21

共引文献66

同被引文献12

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部