摘要
光伏发电是实现“碳达峰、碳中和”目标的重要途径之一,而光伏发电功率受自然因素的影响较大。为提高光伏发电功率的预测精度,以某太阳能电厂的发电数据为基础,运用机器学习的方法,通过ARIMA和Prophet模型来预测太阳能电厂未来发电量。经实验证明,2个模型都能达到较好的预测效果。
Photovoltaic power generation is one of the important ways to achieve“carbon peak and carbon neutrality”,while it is greatly affected by natural factors.In order to improve the prediction accuracy of photovoltaic power generation,the 34-day power generation data of a solar power plant is taken as the research object,and the future power generation of solar power plant is predicted through ARIMA and Prophet models with the help of machine learning method.Experimental results show that both models can predict solar energy generation.
作者
金尚柱
薛润
JIN Shangzhu;XUE Run(School of Intelligent Technology and Engineering,Chongqing University of Science and Technology,Chongqing 401331,China)
出处
《重庆科技学院学报(自然科学版)》
CAS
2022年第3期104-108,共5页
Journal of Chongqing University of Science and Technology:Natural Sciences Edition
基金
重庆市自然科学基金面上项目“不确定性推理中不完备和不一致性问题的解决方法研究”(CSTC2019JCYJMSXMX0355)。